

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

June 2008

3895-8/7895-8/MS/R/08

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552310E-mail:publications@ocr.org.uk

CONTENTS

www.mymathscloud.com

Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Mathematics (MEI) (7895) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME FOR THE UNITS

Unit/Content	Page
4751 (C1) Introduction to Advanced Mathematics	1
4752 (C2) Concepts for Advanced Mathematics	6
4753 (C3) Methods for Advanced Mathematics	8
4754 (C4) Applications of Advanced Mathematics	12
4755 (FP1) Further Concepts for Advanced Mathematics	19
4756 (FP2) Further Methods for Advanced Mathematics	25
4757 (FP3) Further Applications of Advanced Mathematics	31
4758 Differential Equations	38
4761 Mechanics 1	42
4762 Mechanics 2	47
4763 Mechanics 3	51
4764 Mechanics 4	57
4766 Statistics 1	60
4767 Statistics 2	67
4768 Statistics 3	71
4769 Statistics 4	77
4771 Decision Mathematics 1	83
4772 Decision Mathematics 2	88
4773 Decision Mathematics Computation	93
4776 Numerical Methods	98
4777 Numerical Computation	101
Grade Thresholds	105

MWWW. My Marks June 20. Painscioud.com 4751 (C1) Introduction to Advanced Mathematics

Sec	tion A			
1	x > 6/4 o.e. isw	2	M1 for $4x > 6$ or for $6/4$ o.e. found or for their final ans ft their $4x > k$ or $kx > 6$	2
2	(i) (0, 4) and (6, 0)	2	1 each; allow $x = 0$, $y = 4$ etc; condone x = 6, $y = 4$ isw but 0 for (6, 4) with no working	
	(ii) −4/6 o.e. or ft their (i) isw	2	1 for $-\frac{4}{6}x$ or 4/-6 or 4/6 o.e. or ft (accept 0.67 or better)	
			0 for just rearranging to $y = -\frac{2}{3}x + 4$	4
3	(i) 0 or −3/2 o.e.	2	1 each	
	(ii) <i>k</i> < −9/8 o.e. www	3	M2 for $3^2 (-)(-8k) < 0$ o.e. or $-9/8$ found or M1 for attempted use of $b^2 - 4ac$ (may be in quadratic formula); SC: allow M1 for $9 - 8k < 0$ and M1 ft for $k > 9/8$	5
4	(i) T (ii) E (iii) T	3	3 for all correct, 2 for 3 correct. 1 for 2 correct	
	(iv) F			3
5	y(x-2) = (x+3)	M1	for multiplying by <i>x</i> − 2; condone missing brackets	
	xy - 2y = x + 3 or ft [ft from earlier errors if of comparable difficulty – no ft if there are no xy terms]	M1	for expanding bracket and being at stage ready to collect <i>x</i> terms	
	xy - x = 2y + 3 or ft	M1	for collecting <i>x</i> and 'other' terms on opposite sides of eqn	
	$[x =]\frac{2y+3}{y-1}$ o.e. or ft	M1	for factorising and division	
	alt method:		for either method: award 4 marks only if fully correct	
	$y = 1 + \frac{5}{x - 2}$	M1	,	
	$y-1 = \frac{5}{x-2}$	M1		
	$x-2 = \frac{5}{y-1}$	M1		
		M1		
	$x = 2 + \frac{5}{y - 1}$			4

1

			mn	2.0	12
4751	I M a	ark Sc	heme June 2	·yma	this current and the second
6	(i) 5 www	2	allow 2 for ±5; M1 for $25^{1/2}$ seen or for 1/5 seen or for using $25^{1/2} = 5$ with another error (ie M1 for coping correctly with fraction and negative index or with square root)		MM NRSCIOUD.COM
	(ii) 8 <i>x</i> ¹⁰ <i>y</i> ¹³ <i>z</i> ⁴ or 2 ³ <i>x</i> ¹⁰ <i>y</i> ¹³ <i>z</i> ⁴	3	mark final answer; B2 for 3 elements correct, B1 for 2 elements correct; condone multn signs included, but -1 from total earned if addn signs	5	
7	(i) $\frac{5-\sqrt{3}}{22}$ or $\frac{5+(-1)\sqrt{3}}{22}$ or $\frac{5-1\sqrt{3}}{22}$	2	or $a = 5$, $b = -1$, $c = 22$; M1 for attempt to multiply numerator and denominator by $5 - \sqrt{3}$		
	(ii) 37 − 12√ 7 isw www	3	2 for 37 and 1 for $-12\sqrt{7}$ or M1 for 3 correct terms from $9 - 6\sqrt{7} - 6\sqrt{7} + 28$ or $9 - 3\sqrt{28} - 3\sqrt{28} + 28$ or $9 - \sqrt{252} - \sqrt{252} + 28$ o.e. eg using $2\sqrt{63}$ or M2 for $9 - 12\sqrt{7} + 28$ or $9 - 6\sqrt{28} + 28$ or $9 - 2\sqrt{252} + 28$ or $9 - \sqrt{1008} + 28$ o.e.; 3 for $37 - \sqrt{1008}$ but not other equivs	5	
8	-2000 www	4	M3 for $10 \times 5^2 \times (-2[x])^3$ o.e. or M2 for two of these elements or M1 for 10 or $(5\times4\times3)/(3\times2\times1)$ o.e. used [⁵ C ₃ is not sufficient] or for 1 5 10 10 5 1 seen;		
			or B3 for 2000;		
			condone x^3 in ans; equivs: M3 for e.g $5^5 \times 10 \times \left(-\frac{2}{5}[x]\right)^3$		
			o.e. $[5^5$ may be outside a bracket for whole expansion of all terms], M2 for two of these elements etc similarly for factor of 2 taken out at start	4	
9	(y-3)(y-4) = 0	M1	for factors giving two terms correct or attempt at quadratic formula or completing square		
	<i>y</i> = 3 or 4 cao	A1	or B2 (both roots needed)		
	$x = \pm \sqrt{3}$ or ± 2 cao	B2	B1 for 2 roots correct or ft their y (condone $\sqrt{3}$ and $\sqrt{4}$ for B1)	4	18

				nn	y.n	MM Naus
475 [,]	1	Mark	Sche	me June 2	20. Jma	Maths .
	tion E					CIOUN
10	i	$(x-3)^2 - 7$	3	mark final answer; 1 for $a = 3$, 2 for $b = 7$ or M1 for $-3^2 + 2$; bod 3 for $(x - 3) - 7$	3	OM
	ii	(3, −7) or ft from (i)	1+1		2	
	iii	sketch of quadratic correct way up and through (0, 2)	G1	accept (0, 2) o.e. seen in this part [eg in table] if 2 not marked as intercept on graph		
		t.p. correct or ft from (ii)	G1	accept 3 and −7 marked on axes level with turning pt., or better; no ft for (0, 2) as min	2	
	iv	$x^2 - 6x + 2 = 2x - 14$ o.e.	M1	or their (i) = $2x - 14$		
		$x^2 - 8x + 16$ [= 0]	M1	dep on first M1; condone one error		
		$(x-4)^2 = 0$	M1	or correct use of formula, giving equal roots; allow $(x + 4)^2$ o.e. ft $x^2 + 8x + 16$		
		<i>x</i> = 4, <i>y</i> = −6	A1	if M0M0M0, allow SC2 for showing $(4, -6)$ is on both graphs (need to go on to show line is tgt to earn more)		
		equal/repeated roots [implies tgt] - must be explicitly stated; condone 'only one root [so tgt]' or 'line meets curve only once, so tgt' or	A1	or for use of calculus to show grad of line and curve are same when $x = 4$		
		'line touches curve only once' etc]			5	12

3

				mm	y.m.	Mu Asins Inscioud.com
4751	1	Mark	Sche	eme June 2	Inal.	Asens a
11	i	f(-4) used	M1			YOUU.CO
		-128 + 112 + 28 - 12 [= 0]	A1	or B2 for $(x + 4)(2x^2 - x - 3)$ here; or correct division with no remainder	2	UN
	ii	division of $f(x)$ by $(x + 4)$	M1	as far as $2x^3 + 8x^2$ in working, or two terms of $2x^2 - x - 3$ obtained by inspection etc (may be earned in (i)), or f(-1) = 0 found		
		$2x^2 - x - 3$	A1	$2x^2 - x - 3$ seen implies M1A1		I
		(x + 1)(2x - 3)	A1			I
		[f(x) =] (x + 4) (x + 1)(2x - 3)	A1	or B4; allow final A1 ft their factors if M1A1A0 earned	4	
	iii	sketch of cubic correct way up	G1	ignore any graph of $y = f(x - 4)$		I
		through -12 shown on <i>y</i> axis	G1	or coords stated near graph		I
		roots -4 , -1 , 1.5 or ft shown on x axis	G1	or coords stated near graph		l
				if no curve drawn, but intercepts marked on axes, can earn max of G0G1G1	3	
	iv	x (x - 3)(2[x - 4] - 3) o.e. or x $(x - 3)(x - 5.5)$ or ft their factors	M1	or $2(x-4)^3 + 7(x-4)^2 - 7(x-4) - 12$ or stating roots are 0, 3 and 5.5 or ft; condone one error eg 2x - 7 not 2x - 11		
		correct expansion of one pair of brackets ft from their factors	M1	or for correct expn of $(x - 4)^3$ [allow unsimplified]; or for showing g(0) = g(3) = g(5.5) = 0 in given ans g(x)		
		correct completion to given answer	M1	allow M2 for working backwards from given answer to $x(x - 3)(2x - 11)$ and M1 for full completion with factors or roots		
					3	12

				nnn	. My	MM Marins
4751	1	Mark	Sche	me June 2	0. 73	The start st
12	i	grad AB = $\frac{9-1}{31}$ or 2	M1			1040.CO.
		3 - 1 y - 9 = 2(x - 3) or y - 1 = 2(x + 1)	M1	ft their <i>m</i> , or subst coords of A or B in $y =$ their $m x + c$		N,
		<i>y</i> = 2 <i>x</i> + 3 o.e.	A1	or B3	3	
	ii	mid pt of AB = (1, 5)	M1	condone not stated explicitly, but		
		grad perp = −1/grad AB	M1	used in eqn soi by use eg in eqn		
		$y - 5 = -\frac{1}{2}(x - 1)$ o.e. or ft [no ft for just grad AB used]	M1	ft their grad and/or midpt, but M0 if their midpt not used; allow M1 for $y = -\frac{1}{2}x + c$ and then their midpt subst		
		at least one correct interim step towards given answer $2y + x =$ 11, and correct completion NB ans $2y + x =$ 11 given	M1	no ft; correct eqn only		
		alt method working back from ans:		mark one method or the other, to benefit of cand, not a mixture		
		$y = \frac{11 - x}{2}$ o.e.	M1			
		grad perp = −1/grad AB and showing/stating same as given line	M1	eg stating $-\frac{1}{2} \times 2 = -1$		
		finding intn of their $y = 2x + 3$ and $2y + x = 11$ [= (1, 5)]	M1	or showing that (1, 5) is on $2y + x$ = 11, having found (1, 5) first	4	
		showing midpt of AB is (1, 5)	M1	[for both methods: for M4 must be fully correct]		
	iii	showing $(-1 - 5)^2 + (1 - 3)^2 = 40$	M1	at least one interim step needed for each mark; M0 for just $6^2 + 2^2 = 40$		
		showing B to centre = $\sqrt{40}$ or verifying that (3, 9) fits given circle	M1	with no other evidence such as a first line of working or a diagram; condone marks earned in reverse	2	
	iv	$(x-5)^2 + 3^2 = 40$	M1	order for subst <i>y</i> = 0 in circle eqn		
		$(x-5)^2 + 3^2 = 40$ $(x-5)^2 = 31$	M1	condone slip on rhs; or for rearrangement to zero (condone one error) <u>and</u> attempt at quad. formula [allow M1 M0 for $(x - 5)^2 = 40$ or for $(x - 5)^2 + 3^2 = 0$]		
		$x = 5 \pm \sqrt{31}$ or $\frac{10 \pm \sqrt{124}}{2}$ isw	A1	or $5 \pm \frac{\sqrt{124}}{2}$	3	12

MWWW. My Marks June 20. Painscioud.com 4752 (C2) Concepts for Advanced Mathematics

Sec	tion A	1			-
1	210 c.a.o.	2	1 for π rads = 180° soi	2	
2	(i) 5.4 × 10 ⁻³ , 0.0054 or $\frac{27}{5000}$	1			
	(1) 5.4 * 10 ⁻¹ , 0.0054 or $\frac{1}{5000}$			2	
		2	M1 for S = $5.4 / (1 - 0.1)$	3	
	(ii) 6 www				
3	stretch, parallel to the <i>y</i> axis, sf 3	2	1 for stretch plus one other element correct	2	
4	$[f'(x) =] 12 - 3x^2$	B1			
	their $f'(x) > 0$ or = 0 soi	M1			
	-2 < x < 2	A1	condone $-2 \le x \le 2$ or "between -2 and 2"	3	
5	(i) grad of chord = $(2^{3.1} - 2^3)/0.1$	M1			
	0.e.	A1			
	= 5.74 c.a.o.				
		M1	or chord with ends $x = 3 \pm h$,		
	(ii) correct use of A and C where	A1	where $0 < h \le 0.1$	4	
	for C, $2.9 < x < 3.1$		s.c.1 for consistent use of reciprocal of gradient formula in parts (i) and (ii)	4	
	answer in range (5.36, 5.74)				
6	$[y =] kx^{3/2} [+ c]$	M1			
	$\mathbf{k} = 4$	A1	may appear at any stage		
	subst of (9, 105) in their eqn with <i>c</i>	M1	must have <i>c</i> ; must have attempted	4	
	or <i>c</i> = -3	A1	integration	4	
	012 - 3				
7	144	2	M1 for $\frac{1}{2} \times 6^2 \times 1.6$		
	sector area = 28.8 or $\frac{144}{5}$ [cm ²]	M1			
	c.a.o.				
	area of triangle = $\frac{1}{2} \times 6^2 \times \sin 1.6$	M1	must both be areas leading to a	5	
	0.e.	A1	positive answer		
	their sector – their triangle s.o.i.				
	10.8 to 10.81 [cm ²]				
8	<i>a</i> + 10 <i>d</i> = 1 <i>or</i> 121 = 5.5(2a+10d)	M1	or 121 = 5.5(a + 1) gets M2		
	5(2a + 9d) = 120 o.e.	M1	eg 2 <i>a</i> + 9 <i>d</i> = 24		
	a = 21 s.o.i. www	A1		-	
	and $d = -2$ s.o.i. www	A1 A1		5	
9	4th term is 15	M1	or <i>x</i> = log₅ 235	1	-
-	x log 5 = log235 or $x = \frac{\log 235}{\log 5}$				
		A2	A1 for 3.4 or versions of 3.392	3	
10	3.39 2 ($1 - \cos^2 \theta$) = cos θ + 2	M1	for 1 - $\cos^2 \theta = \sin^2 \theta$ substituted		-
10	$2(1 - \cos \theta) = \cos \theta + 2$ $- 2\cos^2 \theta = \cos \theta \text{ s.o.i.}$	A1	graphic calc method: allow M3 for		
	valid attempt at solving their	DM1	intersection of $y = 2 \sin^2 \theta$ and $y = \cos^2 \theta$		
	quadratic in $\cos \theta$		θ + 2 and A2 for all four roots.		
	$\cos \theta = -\frac{1}{2}$ www	A1	All four answers correct but		
	θ = 90, 270, 120, 240	A1	unsupported scores B2. 120 and 240	5	
		1	only: B1.	1	1

				m	20. 2	
4752	2	Mark	k Schen	me June 2	20 Parts	The States
Sec	tion E	3			Cic	24~
11	i	(x+5)(x-2)(x+2)	2	M1 for $a (x + 5)(x - 2)(x + 2)$	2	Y.COD
	ii	$[(x + 2)](x^2 + 3x - 10)$	M1	for correct expansion of one pair of their brackets		
		$x^{3} + 3x^{2} - 10x + 2x^{2} + 6x - 20$ o.e.	M1	for clear expansion of correct factors – accept given answer from $(x + 5)(x^2 - 4)$ as first step	2	
	iii	$y' = 3x^2 + 10x - 4$ their $3x^2 + 10x - 4 = 0$ s.o.i. x = 0.36 from formula o.e.	M2 M1 A1	M1 if one error or M1 for substitution of 0.4 if trying to obtain 0, and A1 for correct demonstration of sign change		
		(-3.7, 12.6)	B1+1			
	iv	(-1.8, 12.6)	B1+1	accept (-1.9, 12.6) or f.t.(½ their max x, their max y)	6 2	
12	i	Area = (-)0.136 seen [m ²] www	4	M3 for 0.1/2 × (0.14 + 0.16 + 2[0.22 + 0.31 + 0.36 + 0.32]) M2 for one slip; M1 for two slips		
		Volume = 0.34 $[m^3]$ or ft from their area \times 2.5	1	must be positive	5	
	ii	$2x^4 - x^3 - 0.25 x^2 - 0.15x$ o.e. value at 0.5 [- value at 0] = -0.1375	M2 M1 A1	M1 for 2 terms correct dep on integral attempted must have neg sign		
		area of cross section (of trough) or area between curve and x-axis 0.34375 r.o.t. to 3 or more sf [m ³] m ³ seen in (i) or (ii)	E1 B1 U1		7	
13	i	log $P = \log a + b \log t$ www comparison with $y = mx + c$ intercept = $\log_{10} a$	1 1 1	must be with correct equation condone omission of base	3	
	ii	log t 0 0.78 1.15 1.18 1.20 log <i>P</i> 1.49 1.64 1.75 1.74	1 1 1	accept to 2 or more dp		
		1.76 plots f.t. ruled line of best fit	1		4	
	111	gradient rounding to 0.22 or 0.23 $a = 10^{1.49}$ s.o.i. $P = 31t^{m}$	2 1 1	M1 for y step / x-step accept1.47 – 1.50 for intercept accept answers that round to 30 – 32 , their positive m	4	
	iv	allow the form P = $10^{0.22\log t}$ answer rounds in range 60 to 63	1		1	

4753 (C3) Methods for Advanced Mathematics

Section A

$\begin{vmatrix} \Rightarrow \\ or \\ \Rightarrow \end{vmatrix}$	$ 2x-1 \le 3$ -3 \le 2x - 1 \le 3 -2 \le 2x \le 4 -1 \le x \le 2 $(2x-1)^2 \le 9$ $4x^2 - 4x - 8 \le 0$ $(4)(x+1)(x-2) \le 0$ -1 \le x \le 2	M1 A1 M1 A1 M1 A1 A1 A1 [4]	$2x - 1 \le 3 \text{ (or =)}$ $x \le 2$ $2x - 1 \ge -3 \text{ (or =)}$ $x \ge -1$ squaring and forming quadratic = 0 (or \le) factorising or solving to get $x = -1, 2$ $x \ge -1$ $x \le 2 \text{ (www)}$
2 ⇒	Let $u = x$, $dv/dx = e^{3x} \Rightarrow v = e^{3x}/3$ $\int x e^{3x} dx = \frac{1}{3}xe^{3x} - \int \frac{1}{3}e^{3x} \cdot 1 \cdot dx$ $= \frac{1}{3}xe^{3x} - \frac{1}{9}e^{3x} + c$	M1 A1 A1 B1 [4]	parts with $u = x$, $dv/dx = e^{3x} \Rightarrow v$ = $\frac{1}{3}xe^{3x} - \frac{1}{9}e^{3x}$ + c
3 (i)	f(-x) = f(x) Symmetrical about Oy.	B1 B1 [2]	
(ii)	(A) even(B) neither(C) odd	B1 B1 B1 [3]	
4	Let $u = x^2 + 2 \Rightarrow du = 2x dx$ $\int_{1}^{4} \frac{x}{x^2 + 2} dx = \int_{3}^{18} \frac{1/2}{u} du$ $= \frac{1}{2} [\ln u]_{3}^{18}$ $= \frac{1}{2} (\ln 18 - \ln 3)$ $= \frac{1}{2} \ln(18/3)$ $= \frac{1}{2} \ln 6^{*}$	M1 A1 M1 E1 [4]	$\int \frac{1/2}{u} du \text{ or } k \ln (x^2 + 1)$ ¹ / ₂ ln <i>u</i> or ¹ / ₂ ln(x ² + 2) substituting correct limits (<i>u</i> or <i>x</i>) must show working for ln 6
$5 \\ \Rightarrow \\ \frac{dy/dx}{\Rightarrow} \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \end{cases}$	$y = x^{2} \ln x$ $\frac{dy}{dx} = x^{2} \cdot \frac{1}{x} + 2x \ln x$ $= x + 2x \ln x$ $= 0 \text{ when } x + 2x \ln x = 0$ $x(1 + 2\ln x) = 0$ $\ln x = -\frac{1}{2}$ $x = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}} *$	M1 B1 A1 M1 E1 [6]	product rule $d/dx (\ln x) = 1/x$ soi oe their deriv = 0 or attempt to verify $\ln x = -\frac{1}{2} \Rightarrow x = e^{-\frac{1}{2}}$ or $\ln (1/\sqrt{e}) = -\frac{1}{2}$

4753 N	Mark Scheme June 20.	Mathscioud
6(i) Initial mass = $20 + 30 e^0 = 50$ grams Long term mass = 20 grams	M1A1 B1 [3]	·com
(ii) $30 = 20 + 30 e^{-0.1t}$ $\Rightarrow e^{-0.1t} = 1/3$ $\Rightarrow -0.1t = \ln(1/3) = -1.0986$ $\Rightarrow t = 11.0 \text{ mins}$	M1 M1 anti-logging correctly A1 [3] 11, 11.0, 10.99, 10.986 (not more than 3 d.p)	
(iii) m_{50} 20 $\rightarrow t$	B1 correct shape through $(0, 50)$ – ignore negative values of t [2] $\rightarrow 20$ as $t \rightarrow \infty$	
7 $x^{2} + xy + y^{2} = 12$ $\Rightarrow 2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$ $\Rightarrow (x + 2y)\frac{dy}{dx} = -2x - y$ $\Rightarrow \frac{dy}{dx} = -\frac{2x + y}{(x + 2y)}$	M1 B1Implicit differentiation $x \frac{dy}{dx} + y$ correct equationM1collecting terms in dy/dx and factorisingA1 [5]oe cao	

Section B

8(i) $y = 1/(1 + \cos \pi/3) = 2/3.$	B1 [1]	or 0.67 or better
(ii) $f'(x) = -1(1 + \cos x)^{-2} - \sin x$ $= \frac{\sin x}{(1 + \cos x)^2}$ When $x = \pi/3$, $f'(x) = \frac{\sin(\pi/3)}{(1 + \cos(\pi/3))^2}$ $= \frac{\sqrt{3}/2}{(1\frac{1}{2})^2} = \frac{\sqrt{3}}{2} \times \frac{4}{9} = \frac{2\sqrt{3}}{9}$	M1 B1 A1 M1 A1 [5]	chain rule or quotient rule $d/dx (\cos x) = -\sin x \text{ soi}$ correct expression substituting $x = \pi/3$ oe or 0.38 or better. (0.385, 0.3849)
(iii) deriv = $\frac{(1 + \cos x)\cos x - \sin x.(-\sin x)}{(1 + \cos x)^2}$	M1	Quotient or product rule – condone uv' – u'v for M1
$=\frac{\cos x + \cos^2 x + \sin^2 x}{(1 + \cos x)^2}$	A1	correct expression
$=\frac{\cos x+1}{\left(1+\cos x\right)^2}$	M1dep	$\cos^2 x + \sin^2 x = 1$ used dep M1
$=\frac{1}{1+\cos x} *$	E1	www
Area = $\int_{0}^{\pi/3} \frac{1}{1 + \cos x} dx$ = $\left[\frac{\sin x}{1 + \cos x} \right]_{0}^{\pi/3}$ = $\frac{\sin \pi/3}{1 + \cos \pi/3} (-0)$ = $\frac{\sqrt{3}}{2} \times \frac{2}{3} = \frac{\sqrt{3}}{3}$	B1 M1 A1 cao [7]	substituting limits or $1/\sqrt{3}$ - must be exact
(iv) $y = 1/(1 + \cos x)$ $x \leftrightarrow y$ $x = 1/(1 + \cos y)$	M1	attempt to invert equation
$ \Rightarrow 1 + \cos y = 1/x \Rightarrow \cos y = 1/x - 1 \Rightarrow y = \arccos(1/x - 1) * $	A1 E1	www
Domain is $\frac{1}{2} \le x \le 1$	B1	
	B1	reasonable reflection in $y = x$
	[5]	

		www.myp
4753 Ma	ark Schen	ne June 20.73
9 (i) $y = \sqrt{4 - x^2}$ $\Rightarrow y^2 = 4 - x^2$ $\Rightarrow x^2 + y^2 = 4$ which is equation of a circle centre O radius 2 Square root does not give negative values, so this is only a semi-circle.	M1 A1 B1 [3]	ne June 20. squaring $x^2 + y^2 = 4 + \text{comment (correct)}$ oe, e.g. f is a function and therefore single valued
(ii) (A) Grad of OP = b/a \Rightarrow grad of tangent = $-\frac{a}{b}$	M1 A1	
(B) $f'(x) = \frac{1}{2}(4-x^2)^{-1/2} \cdot (-2x)$ $= -\frac{x}{\sqrt{4-x^2}}$ $\Rightarrow f'(a) = -\frac{a}{\sqrt{4-a^2}}$ (C) $b = \sqrt{(4-a^2)}$ so $f'(a) = -\frac{a}{b}$ as before	M1 A1 B1 E1 [6]	chain rule or implicit differentiation oe substituting <i>a</i> into their $f'(x)$
(iii) Translation through $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ followed by stretch scale factor 3 in <i>y</i> -direction $\begin{pmatrix} 6 \\ 4 \\ 4 \end{pmatrix}$	M1 A1 M1 A1 M1 A1 A1 [6]	Translation in x-direction through $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ or 2 to right ('shift', 'move' M1 A0) $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ alone is SC1 stretch in y-direction (condone y 'axis') (scale) factor 3 elliptical (or circular) shape through (0, 0) and (4, 0) and (2, 6) (soi) -1 if whole ellipse shown
(iv) $y = 3f(x-2)$ = $3\sqrt{(4 - (x-2)^2)}$ = $3\sqrt{(4 - x^2 + 4x - 4)}$ = $3\sqrt{(4x - x^2)}$ $\Rightarrow y^2 = 9(4x - x^2)$ $\Rightarrow 9x^2 + y^2 = 36x *$	M1 A1 E1 [3]	or substituting $3\sqrt{(4 - (x - 2)^2)}$ oe for y in $9x^2 + y^2$ $4x - x^2$ www

MWWW. My Marks June 20. Painscioud.com 4754 (C4) Applications of Advanced Mathematics

Section A

$1 \qquad \frac{x}{x^2 - 4} + \frac{2}{x + 2} = \frac{x}{(x - 2)(x + 2)} + \frac{2}{x + 2}$ $= \frac{x + 2(x - 2)}{(x + 2)(x - 2)}$ $= \frac{3x - 4}{(x + 2)(x - 2)}$	M1 M1 A1 [3]	combining fractions correctly factorising and cancelling (may be $3x^2+2x-8$)
2 $V = \int_0^1 \pi y^2 dx = \int_0^1 \pi (1 + e^{2x}) dx$ = $\pi \left[x + \frac{1}{2} e^{2x} \right]_0^1$	M1 B1	must be π x their y^2 in terms of x $\left[x + \frac{1}{2}e^{2x}\right]$ only
$= \pi (1 + \frac{1}{2}e^{2} - \frac{1}{2})$ $= \frac{1}{2}\pi (1 + e^{2})^{*}$	M1 E1 [4]	$\begin{bmatrix} 2 \end{bmatrix}$ substituting both <i>x</i> limits in a function of <i>x</i> www
3 $\cos 2\theta = \sin \theta$ $\Rightarrow 1 - 2\sin^2 \theta = \sin \theta$ $\Rightarrow 1 - \sin \theta - 2\sin^2 \theta = 0$ $\Rightarrow (1 - 2\sin \theta)(1 + \sin \theta) = 0$ $\Rightarrow \sin \theta = \frac{1}{2} \text{ or } -1$ $\Rightarrow \theta = \pi/6, 5\pi/6, 3\pi/2$	M1 M1 A1 M1 A1 A2,1,0 [7]	$\cos 2\theta = 1 - 2\sin^2 \theta$ oe substituted forming quadratic(in one variable) =0 correct quadratic www factorising or solving quadratic $\frac{1}{2}$, -1 oe www cao penalise extra solutions in the range
4 $\sec \theta = x/2$, $\tan \theta = y/3$ $\sec^2 \theta = 1 + \tan^2 \theta$ $\Rightarrow x^2/4 = 1 + y^2/9$ $\Rightarrow x^2/4 - y^2/9 = 1 *$ OR $x^2/4 - y^2/9 = 4\sec^2 \theta/4 - 9\tan^2 \theta/9$ $= \sec^2 \theta - \tan^2 \theta = 1$	M1 M1 E1 [3]	$\sec^2 \theta = 1 + \tan^2 \theta$ used (oe, e.g. converting to sines and cosines and using $\cos^2 \theta + \sin^2 \theta = 1$) eliminating θ (or x and y) www
$=\sec^{2}\theta - \tan^{2}\theta = 1$ 5(i) $dx/du = 2u$, $dy/du = 6u^{2}$ $\Rightarrow \frac{dy}{dx} = \frac{dy/du}{dx/du} = \frac{6u^{2}}{2u}$ $= 3u$ OR $y=2(x-1)^{3/2}$, $dy/dx=3(x-1)^{1/2}=3u$	B1 M1 A1 [3]	both $2u$ and $6u^2$ B1($y=f(x)$), M1 differentiation, A1
(ii) At (5, 16), $u = 2$ $\Rightarrow \frac{dy}{dx} = 6$	M1 A1 [2]	сао

4754	Mark So	cheme June 20	Mathscioud
$6(i) (1+4x^{2})^{-\frac{1}{2}} = 1 - \frac{1}{2} \cdot 4x^{2} + \frac{(-\frac{1}{2}) \cdot (-\frac{3}{2})}{2!} (4x^{2})^{2} + \dots$ $= 1 - 2x^{2} + 6x^{4} + \dots$ Valid for $-1 < 4x^{2} < 1 \implies -\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1 M1A1 [5]	binomial expansion with $p = -1/2$ $1 - 2x^2 \dots + 6x^4$	Com
(ii) $\frac{1-x^2}{\sqrt{1+4x^2}} = (1-x^2)(1-2x^2+6x^4+)$ = $1-2x^2+6x^4-x^2+2x^4+$ = $1-3x^2+8x^4+$	M1 A1 A1 [3]	substituting their $1 - 2x^2 + 6x^4 +$ and expanding ft their expansion (of three terms) cao	
7 $\sqrt{3} \sin x - \cos x = R \sin(x - \alpha)$ $= R(\sin x \cos \alpha - \cos x \sin \alpha)$ $\Rightarrow \sqrt{3} = R \cos \alpha, 1 = R \sin \alpha$ $\Rightarrow R^2 = 3 + 1 = 4 \Rightarrow R = 2$ $\tan \alpha = 1/\sqrt{3}$ $\Rightarrow \alpha = \pi/6$ $\Rightarrow y = 2 \sin(x - \pi/6)$	M1 B1 M1 A1	correct pairs soi R = 2 ft cao www	*
Max when $x - \pi/6 = \pi/2 \Rightarrow x = \pi/6 + \pi/2 = 2\pi/3$ max value $y = 2$ So maximum is $(2\pi/3, 2)$	B1 B1 [6]	cao ft their <i>R</i> SC B1 (2, $2\pi/3$) no working	

Section B

		ne June 20.	12
4754 Ma	rk Schem	June 20	haths with
Section B			Cloud.
8(i) At A: $3 \times 0 + 2 \times 0 + 20 \times (-15) + 300 = 0$ At B: $3 \times 100 + 2 \times 0 + 20 \times (-30) + 300 = 0$ At C: $3 \times 0 + 2 \times 100 + 20 \times (-25) + 300 = 0$ So ABC has equation $3x + 2y + 20z + 300 = 0$	M1 A2,1,0 [3]	substituting co-ords into equation of plane for ABC OR using two vectors in the plane form vector product M1A1 then 3x + 2y + 20z = c = -300 A1 OR using vector equation of plane M1,elim both parameters M1, A1	
(ii) $\overrightarrow{DE} = \begin{pmatrix} 100 \\ 0 \\ -10 \end{pmatrix}$ $\overrightarrow{DF} = \begin{pmatrix} 0 \\ 100 \\ 5 \end{pmatrix}$	B1B1		
$ \begin{pmatrix} 100\\0\\-10 \end{pmatrix} \begin{pmatrix} 2\\-1\\20 \end{pmatrix} = 100 \times 2 + 0 \times -1 + -10 \times 20 = 200 - 200 = 0 $	B1	need evaluation	
$ \begin{pmatrix} -10 \\ 0 \\ 100 \\ 5 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 20 \end{pmatrix} = 0 \times 2 + 100 \times -1 + 5 \times 20 = -100 + 100 = 0 $	B1	need evaluation	
Equation of plane is $2x - y + 20z = c$ At D (say) $c = 20 \times -40 = -800$ So equation is $2x - y + 20z + 800 = 0$	M1 A1 [6]		
(iii) Angle is θ , where $\begin{pmatrix} 2 \\ -1 \\ 20 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 20 \end{pmatrix}$ $\cos \theta = \frac{404}{\sqrt{2^2 + (-1)^2 + 20^2} \sqrt{3^2 + 2^2 + 20^2}} = \frac{404}{\sqrt{405} \sqrt{413}}$ $\Rightarrow \theta = 8.95^{\circ}$	M1 A1 A1 A1cao [4]	formula with correct vectors top bottom (or 0.156 radians)	
(iv) RS: $\mathbf{r} = \begin{pmatrix} 15\\34\\0 \end{pmatrix} + \lambda \begin{pmatrix} 3\\2\\20 \end{pmatrix}$	B1	$\begin{pmatrix} 15\\ 34\\ 0 \end{pmatrix} + \dots$	
$= \begin{pmatrix} 15+3\lambda\\ 34+2\lambda\\ 20\lambda \end{pmatrix}$	B1	$\dots + \lambda \begin{pmatrix} 3 \\ 2 \\ 20 \end{pmatrix}$	
$\Rightarrow 3(15+3\lambda) + 2(34+2\lambda) + 20.20\lambda + 300 = 0$ $\Rightarrow 45 + 9\lambda + 68 + 4\lambda + 400 \lambda + 300 = 0$ $\Rightarrow 413 + 413\lambda = 0$	M1 A1	solving with plane $\lambda = -1$	
$\Rightarrow \begin{array}{l} 413 + 413\lambda = 0 \\ \Rightarrow \lambda = -1 \\ \text{so S is (12, 32, -20)} \end{array}$	A1 [5]	$\lambda = -1$ cao	

		MMW. MYM	132 133
4754	Mark	Scheme June 20.	Athscip
9(i) $v = \int 10e^{-\frac{1}{2}t} dt$ = $-20e^{-\frac{1}{2}t} + c$ when $t = 0, v = 0$ $\Rightarrow 0 = -20 + c$	M1 A1 M1	Scheme June 20. separate variables and intend to integrate $-20e^{-\frac{1}{2}t}$ finding c	SUD
$\Rightarrow c = 20$ so $v = 20 - 20e^{-\frac{1}{2}t}$	A1 [4]	cao	
(ii) As $t \to \infty$ $e^{-1/2t} \to 0$ $\Rightarrow v \to 20$ So long term speed is 20 m s ⁻¹	M1 A1 [2]	ft (for their $c > 0$, found)	
(iii) $\frac{1}{(w-4)(w+5)} = \frac{A}{w-4} + \frac{B}{w+5}$ $= \frac{A(w+5) + B(w-4)}{(w-4)(w+5)}$ $\Rightarrow 1 \equiv A(w+5) + B(w-4)$ $w = 4: 1 = 9A \Rightarrow A = 1/9$ $w = -5: 1 = -9B \Rightarrow B = -1/9$ $\Rightarrow \frac{1}{(w-4)(w+5)} = \frac{1/9}{w-4} - \frac{1/9}{w+5}$ $= \frac{1}{9(w-4)} - \frac{1}{9(w+5)}$	M1 M1 A1 A1 [4]	cover up, substitution or equating coeffs 1/9 -1/9	
(iv) $\frac{dw}{dt} = -\frac{1}{2}(w-4)(w+5)$ $\Rightarrow \int \frac{dw}{(w-4)(w+5)} = \int -\frac{1}{2}dt$ $\Rightarrow \int [\frac{1}{9(w-4)} - \frac{1}{9(w+5)}]dw = \int -\frac{1}{2}dt$ $\Rightarrow \frac{1}{9}\ln(w-4) - \frac{1}{9}\ln(w+5) = -\frac{1}{2}t+c$ $\Rightarrow \frac{1}{9}\ln\frac{w-4}{w+5} = -\frac{1}{2}t+c$ When $t = 0, w = 10 \Rightarrow c = \frac{1}{9}\ln\frac{6}{15} = \frac{1}{9}\ln\frac{2}{5}$ $\Rightarrow \ln\frac{w-4}{w+5} = -\frac{9}{2}t + \ln\frac{2}{5}$ $\Rightarrow \frac{w-4}{w+5} = e^{\frac{9}{2}t+\ln\frac{2}{5}} = \frac{2}{5}e^{-\frac{9}{2}t} = 0.4e^{-4.5t}*$	M1 M1 A1ft M1 M1 E1	<pre>separating variables substituting their partial fractions integrating correctly (condone absence of c) correctly evaluating c (at any stage) combining lns (at any stage) www</pre>	
$\frac{1}{w+5} - e^{-t} = -\frac{1}{5}e^{-t} - 0.4e^{-t}$ (v) As $t \to \infty$ $e^{-4.5t} \to 0$ $\Rightarrow w-4 \to 0$ So long term speed is 4 m s ⁻¹ .	[6] M1 A1 [2]		

Comprehension

1. (i)

2	1	3
3	2	1
1	3	2

(ii)

3.

2	3	1
3	1	2
1	2	3

B1 cao

B1 cao

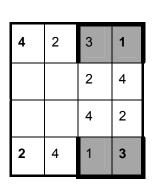
2. Dividing the grid up into four 2 x 2 blocks gives

1	2	3	4
3	1	4	2
2	4	1	3
4	3	2	1

- Lines drawn on diagram or reference to 2 x 2 blocks. M1
- One (or more) block does not contain all 4 of the symbols 1, 2, 3 and 4. oe. E1

1	2	3	4
4	3	1	2
2	1	4	3
3	4	2	1

Many possible answers


B1 Rest correct B1

Row 2 correct

Or

4754

4. Either

4	2	3	1
		2	4
		4	2
2	4	1	3

5. In the top row there are 9 ways of allocating a symbol to the left cell, then 8 for the next, 7 for the next and so on down to 1 for the right cell, giving

 $9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 9!$ ways.

So there must be 9!× the number of ways of completing the rest of the puzzle.

6. (i)

Block side length,	Sudoku,	M
b	$s \times s$	
1	1 × 1	-
2	4 × 4	12
3	9 × 9	77
4	16 × 16	252
5	25 × 25	621

E1

M1

B2

25 × 25 B1

77, 252 and 621 B1

	:\		
()	I)		

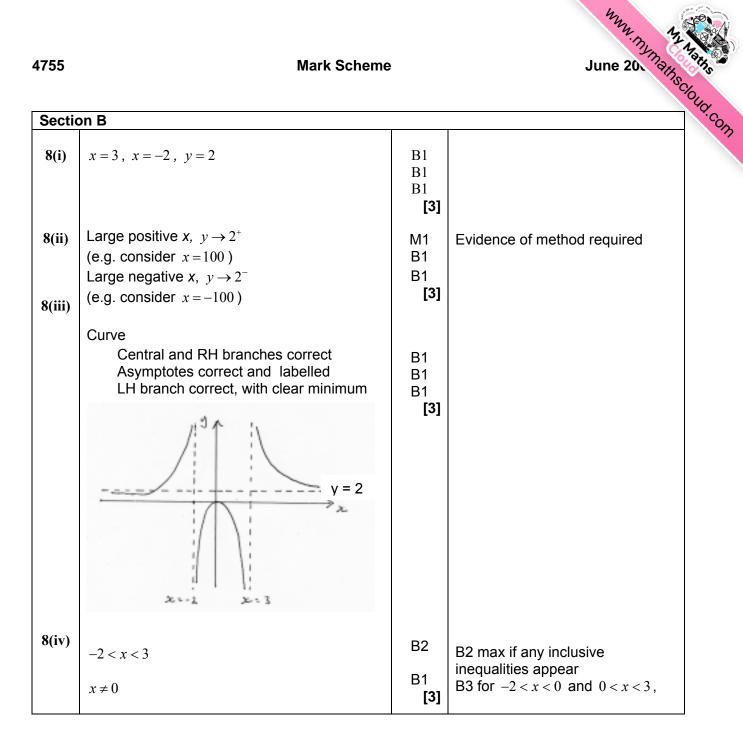
 $M = b^4 - 4$

*b*⁴ **B1**

^{- 4} B1

WWWW. Mymainscioud.com

7.		
(i)	There are neither 3s nor 5s among the givens.	M1
	So they are interchangeable and therefore there is no unique solution	E1
(ii)	The missing symbols form a 3 \times 3 embedded Latin square.	M1
	There is not a unique arrangement of the numbers 1, 2 and 3 in this square.	E1
		[18]


June 20. Theinscioud.com

Mark Qu Comment Answer Section A $-1 \ 0$ 1(i) B1 0 1 $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ 1(ii) B1 1(iii) M1 Multiplication, or other valid $\begin{pmatrix} 3 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$ A1 method (may be implied) $\begin{pmatrix} 0 & 3 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \end{pmatrix}$ 0 3 [4] c.a.o. Im 2 B3 Circle, B1; centre -3+2j, B1; radius = 2, B1 Line parallel to real axis, B1; B3 2 through (0, 2), B1; correct half line, B1 B1 Points -1+2j and -5+2j>Re indicated -3 c.a.o. [7] 3 $\operatorname{For}\begin{pmatrix} -1 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ $\begin{pmatrix} -1 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ M1 M1 $\Rightarrow -x - y = x, \ 2x + 2y = y$ B1 $\Rightarrow y = -2x$ [3] 4 $3x^{3} - x^{2} + 2 \equiv A(x-1)^{3} + (x^{3} + Bx^{2} + Cx + D)$ $\equiv Ax^{3} - 3Ax^{2} + 3Ax - A + x^{3} + Bx^{2} + Cx + D$ M1 Attempt to compare coefficients $\equiv (A+1)x^{3} + (B-3A)x^{2} + (3A+C)x + (D-A)$ $\Rightarrow A = 2, B = 5, C = -6, D = 4$ B4 One for each correct value [5]

4755 (FP1) Further Concepts for Advanced Mathematics

4755	Mark Schem	e	Mun, my mainschoud June 20. Minus 1 each error to minimum of
5(i)	$\mathbf{AB} = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{pmatrix}$	ВЗ [3]	Minus 1 each error to minimum of
5(ii)	$\mathbf{A}^{-1} = \frac{1}{7} \begin{pmatrix} -1 & 0 & 2\\ 14 & -14 & 7\\ -5 & 7 & -4 \end{pmatrix}$	M1 A1 [2]	Use of B c.a.o.
6	$w = 2x \implies x = \frac{w}{2}$ $\implies 2\left(\frac{w}{2}\right)^3 + \left(\frac{w}{2}\right)^2 - 3\left(\frac{w}{2}\right) + 1 = 0$	B1 M1 A1	Substitution. For substitution x = 2w give B0 but then follow through for a maximum of 3 marks Substitute into cubic Correct substitution
	$\Rightarrow w^3 + w^2 - 6w + 4 = 0$	A2 [5]	Minus 1 for each error (including '= 0' missing), to a minimum of 0 Give full credit for integer multiple of equation
6	OR $\alpha + \beta + \gamma = -\frac{1}{2}$ $\alpha\beta + \alpha\gamma + \beta\gamma = -\frac{3}{2}$ $\alpha\beta\gamma = -\frac{1}{2}$	B1	All three
	Let new roots be k, l, m then $k + l + m = 2(\alpha + \beta + \gamma) = -1 = \frac{-B}{A}$	M1	Attempt to use sums and products of roots of original equation to find sums and products of roots in related equation
	$kl + km + lm = 4(\alpha\beta + \alpha\gamma + \beta\gamma) = -6 = \frac{C}{A}$ $klm = 8\alpha\beta\gamma = -4 = \frac{-D}{A}$	A1	Sums and products all correct
	$\Rightarrow \omega^3 + \omega^2 - 6\omega + 4 = 0$	A2 [5]	ft their coefficients; minus one for each error (including '= 0' missing), to minimum of 0 Give full credit for integer multiple of equation

4755	Mark Schem	e	Munition Marine Sciloud Com
7(i)	$\frac{1}{3r-1} - \frac{1}{3r+2} \equiv \frac{3r+2-(3r-1)}{(3r-1)(3r+2)}$	M1	Attempt at correct method
	$\equiv \frac{3}{\left(3r-1\right)\left(3r+2\right)}$	A1	Correct, without fudging
		[2]	
7(ii)	$\sum_{r=1}^{n} \frac{1}{(3r-1)(3r+2)} = \frac{1}{3} \sum_{r=1}^{n} \left[\frac{1}{3r-1} - \frac{1}{3r+2} \right]$	M1	Attempt to use identity
	$=\frac{1}{3}\left[\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\dots+\left(\frac{1}{3n-1}-\frac{1}{3n+2}\right)\right]$	A1 M1	Terms in full (at least two) Attempt at cancelling
	$=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]$	A2	A1 if factor of $\frac{1}{3}$ missing,
		[5]	A1 max if answer not in terms of <i>n</i>
			Section A Total: 36

Mark Scheme

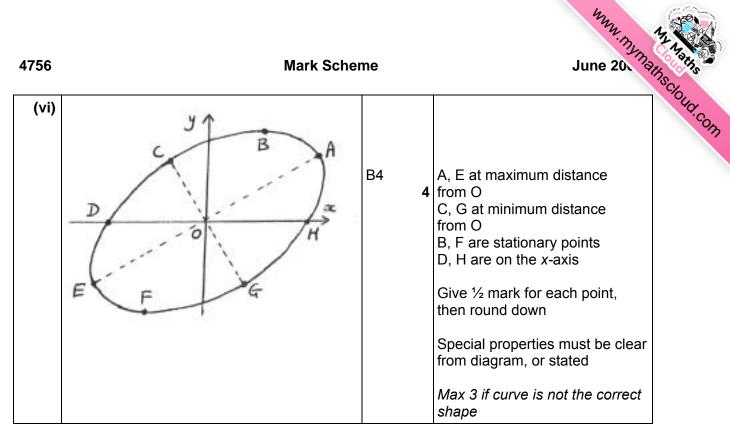
4755	Mark Scheme		June 20. Days
4755 9(i) 9(ii) 9(iii)	Mark Scheme 2+2j and -1-j $if x + 2j +$	B2 [2] B2 [2] M1 B2 A1 M1	Mmm.m.m.m.g.m.g.courd.com June 20. Trainscroot 1 mark for each 1 mark for each correct pair 1 mark for each correct pair Attempt to use factor theorem Correct factors, minus 1 each error B1 if only errors are sign errors One correct quadratic with real coefficients (may be implied) Expanding
	$= x^{3} - 2x^{2} + 2x^{2} + 8x + 16$ $\Rightarrow A = -2, B = 2, C = 8, D = 16$ OR	A2 [7]	Minus 1 each error, A1 if only errors are sign errors
	$\sum \alpha = 2$ $\alpha\beta\gamma\delta = 16$ $\sum \alpha\beta = \alpha\alpha^* + \alpha\beta + \alpha\beta^* + \beta\beta^* + \beta\alpha^* + \beta^*\alpha^*$ $\sum \alpha\beta\gamma = \alpha\alpha^*\beta + \alpha\alpha^*\beta^* + \alpha\beta\beta^* + \alpha^*\beta\beta^*$ $\sum \alpha\beta = 2, \ \sum \alpha\beta\gamma = -8$ A = -2, B = 2, C = 8, D = 16 OR Attempt to substitute in one root Attempt to substitute in a second root Equating real and imaginary parts to 0 Attempt to solve simultaneous equations A = -2, B = 2, C = 8, D = 16	B1 B1 M1 M1 A1 A2 [7] M1 M1 A1 M1 M1 A2 [7]	Both correct Minus 1 each error, A1 if only errors are sign errors Both correct Minus 1 each error, A1 if only errors are sign errors

Mark Scheme

755	Mark Scheme		Somment
Qu	Answer	Mark	Comment
Section	B (continued)		L
	$\sum_{r=1}^{n} r^{2} (r+1) = \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r^{2}$	M1	Separation of sums (may be implied)
	$= \frac{1}{4}n^{2}(n+1)^{2} + \frac{1}{6}n(n+1)(2n+1)$ $= \frac{1}{12}n(n+1)\left[3n(n+1) + 2(2n+1)\right]$	B1 M1	One mark for both parts Attempt to factorise (at least two linear algebraic factors)
	$= \frac{1}{12}n(n+1)(3n^2+7n+2)$	A1	Correct
	$= \frac{1}{12} n (n+1) (n+2) (3n+1)$	E1	Complete, convincing argument
		[5]	
,	$\sum_{r=1}^{n} r^{2} (r+1) = \frac{1}{12} n (n+1) (n+2) (3n+1)$ n = 1, LHS = RHS = 2 Assume true for $n = k$ $\sum_{r=1}^{k} r^{2} (r+1) = \frac{1}{12} k (k+1) (k+2) (3k+1)$ $\sum_{r=1}^{k+1} r^{2} (r+1)$	B1 E1	2 must be seen Assuming true for <i>k</i>
	$\sum_{r=1}^{k+1} r^{2} (r+1)$ $= \frac{1}{12} k (k+1) (k+2) (3k+1) + (k+1)^{2} (k+2)$ $= \frac{1}{12} (k+1) (k+2) [k (3k+1) + 12 (k+1)]$ $= \frac{1}{12} (k+1) (k+2) (3k^{2} + 13k + 12)$ $= \frac{1}{12} (k+1) (k+2) (k+3) (3k+4)$	B1 M1 A1 A1	(<i>k</i> + 1)th term Attempt to factorise Correct Complete convincing argument
	$= \frac{1}{12}(k+1)((k+1)+1)((k+1)+2)(3(k+1)+1)$	E1	Dependent on provinue A1 and
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is true for $k = 1$,	E1	Dependent on previous A1 and previous E1 Dependent on first B1 and previous E1
	2, 3 and so true for all positive integers.	[8]	Section B Total: 36

MWWW. My Marks June 20. Parts Cloud. Com

4756 (FP2) Further Methods for Advanced Mathematics


1(a)(i)	$x = r\cos\theta, \ y = r\sin\theta$	M1		(M0 for $x = \cos \theta$, $y = \sin \theta$)
	$(r^2 \cos^2 \theta + r^2 \sin^2 \theta)^2 = 3(r \cos \theta)(r \sin \theta)^2$	A1		
	$r^4 = 3r^3 \cos\theta \sin^2\theta$			
	$r = 3\cos\theta\sin^2\theta$	A1 ag		
			3	
(ii)		B1		Loop in 1st quadrant
	$\langle \rangle$	B1		Loop in 4th quadrant
	\square	B1	3	Fully correct curve Curve may be drawn using continuous or broken lines in any combination
(b)	$\begin{bmatrix} 1 & 1 & \begin{bmatrix} 1 & \sqrt{3} \\ r \end{bmatrix}^{1}$	M1		For arcsin
	$\int_{0}^{1} \frac{1}{\sqrt{4-3x^{2}}} \mathrm{d}x = \left[\frac{1}{\sqrt{3}} \arcsin \frac{\sqrt{3} x}{2} \right]_{0}^{1}$	A1A1		For $\frac{1}{\sqrt{3}}$ and $\frac{\sqrt{3}x}{2}$
	$=\frac{1}{\sqrt{3}} \arcsin \frac{\sqrt{3}}{2}$	M1		Exact numerical value
	$=\frac{\pi}{3\sqrt{3}}$	A1	5	Dependent on first M1 (M1A0 for $60/\sqrt{3}$)
	OR M1			Any sine substitution
	Put $\sqrt{3} x = 2\sin\theta$ A1			
	$\int_{0}^{1} \frac{1}{\sqrt{4-3x^{2}}} \mathrm{d}x = \int_{0}^{\frac{\pi}{3}} \frac{1}{\sqrt{3}} \mathrm{d}\theta \qquad \qquad A1$			For $\int \frac{1}{\sqrt{3}} d\theta$
	$=\frac{\pi}{3\sqrt{3}}$ M1A1			M1 dependent on first M1
(c)(i)	$\ln(1+x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \frac{1}{4}x^{4} + \frac{1}{5}x^{5} - \dots$	B1		
	$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 - \frac{1}{5}x^5 - \dots$	B1	2	Accept unsimplified forms
(ii)	$\ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1-x)$	M1		
	$=2x+\frac{2}{3}x^{3}+\frac{2}{5}x^{5}+$	A1	2	Obtained from two correct series <i>Terms need not be added</i> If M0, then B1 for $2x + \frac{2}{3}x^3 + \frac{2}{5}x^5$

4756	Mark Sche	mo		<i>www.myms</i> June 20 <i>Terms need not be added</i> For $x = \frac{1}{2}$ seen or implied	14 13
4750	Mark Sche			Julie 200 9	the is
(iii)	$\sum_{r=0}^{\infty} \frac{1}{(2r+1)4^r} = 1 + \frac{1}{3 \times 4} + \frac{1}{5 \times 4^2} + \dots$	B1		Terms need not be added	OUD COM
	$= 2 \times \frac{1}{2} + \frac{2}{3} \times (\frac{1}{2})^3 + \frac{2}{5} \times (\frac{1}{2})^5 + \dots$	B1		For $x = \frac{1}{2}$ seen or implied	
	$= \ln\left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right) = \ln 3$	B1 ag	3	Satisfactory completion	
2 (i)	$ z = 8$, arg $z = \frac{1}{4}\pi$	B1B1		Must be given separately Remainder may be given in exponential or $r \operatorname{cjs} \theta$ form	
	$ z^* = 8$, arg $z^* = -\frac{1}{4}\pi$	B1 ft		(B0 for $\frac{7}{4}\pi$)	
	$ zw = 8 \times 8 = 64$	B1 ft			
	$\arg(z w) = \frac{1}{4} \pi + \frac{7}{12} \pi = \frac{5}{6} \pi$	B1 ft			
	$\left \frac{z}{w}\right = \frac{8}{8} = 1$	B1 ft		(B0 if left as 8/8)	
	$\arg(\frac{z}{w}) = \frac{1}{4}\pi - \frac{7}{12}\pi = -\frac{1}{3}\pi$	B1 ft	7		
(ii)	$\frac{Z}{2} = \cos(-\frac{1}{2} - \frac{1}{2}) + i\sin(-\frac{1}{2} - \frac{1}{2})$		-		
	$\frac{2}{w} = \cos(-\frac{1}{3}\pi) + j\sin(-\frac{1}{3}\pi)$	M1		If M0, then B1B1 for	
	$=\frac{1}{2}-\frac{\sqrt{3}}{2}j$	A1	2	$\frac{1}{2}$ and $-\frac{\sqrt{3}}{2}$	
	$a = \frac{1}{2}, b = -\frac{1}{2}\sqrt{3}$		2	2 2 2	
(iii)	$r = \sqrt[3]{8} = 2$	B1 ft		Accept ∛8	
	$\theta = \frac{1}{12} \pi$	B1			
	$\theta = \frac{\pi}{12} + \frac{2k\pi}{3}$	M1		Implied by one further correct	
	$\theta = -\frac{7}{12}\pi, \frac{3}{4}\pi$	A1		(ft) value Ignore values outside the	
			4	required range	
(iv)	$w^* = 8 e^{-\frac{7}{12}\pi j}$, so $2 e^{-\frac{7}{12}\pi j} = \frac{1}{4} w^*$ $k_1 = \frac{1}{4}$	B1 ft		Matching <i>w</i> * to a cube root with argument $-\frac{7}{12}\pi$ and $k_1 = \frac{1}{4}$ or ft	
	$n_1 = 4$			ft is $\frac{r}{8}$	
	$z^* = 8 e^{-\frac{1}{4}\pi j} = -8 e^{\frac{3}{4}\pi j}$	M1		Matching z^* to a cube root with argument $\frac{3}{4}\pi$ May be implied	
	So $2e^{\frac{3}{4}\pi j} = -\frac{1}{4}z^*$ $k_2 = -\frac{1}{4}$	A1 ft		ft is $-\frac{r}{ z^* }$	
		M1		Matching jw to a cube root with argument $\frac{1}{12}\pi$ May be implied	
	$jw = 8e^{(\frac{1}{2}\pi + \frac{7}{12}\pi)j} = 8e^{\frac{13}{12}\pi j}$			OR M1 for $\arg(jw) = \frac{1}{2}\pi + \arg w$	
	$jw = 8e^{\frac{1}{2}\pi j}$ = 8e ¹² = -8e ^{$\frac{1}{12}\pi j$} , SO $2e^{\frac{1}{12}\pi j}$ = $-\frac{1}{4}jw$			(implied by $\frac{13}{12}\pi$ or $-\frac{11}{12}\pi$)	
	$=-8e^{12}$, SO $2e^{12}$, $=-\frac{1}{4}Jw$ $k_3 = -\frac{1}{4}$	A1 ft		ft is $-\frac{r}{8}$	
	~3 4		5		

			Evaluation of determinant (must involve k)	14213
4756	Mark Scher	ne	June 20. S	ths is
3 (i)		M1	Evaluation of determinant (must involve k)	Std.Com
		A1	For $(k-3)$	
	$\begin{pmatrix} -1 & k+2 & -1 \end{pmatrix}$	M1	Finding at least four cofactors (including one involving k)	
	$\mathbf{Q}^{-1} = \frac{1}{k-3} \begin{pmatrix} -1 & k+2 & -1\\ 1 & 4-3k & k-2\\ 1 & -5 & 1 \end{pmatrix}$	A1	Six signed cofactors correct (including one involving k)	
	When $k = 4$, $\mathbf{Q}^{-1} = \begin{pmatrix} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{pmatrix}$	M1	Transposing and dividing by det Dependent on previous M1M1	
	$\begin{pmatrix} 1 & -7 & -7 \\ 1 & -5 & 1 \end{pmatrix}$	A1	\mathbf{Q}^{-1} correct (in terms of <i>k</i>) and result for $k = 4$ stated	
			After 0, SC1 for \mathbf{Q}^{-1} when $k = 4$	
			obtained correctly with some working	
(ii)	(2 -1 4) $(1 0 0)$			
	$\mathbf{P} = \begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	B1B1	For B2, order must be consistent	
	$\mathbf{M} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$	B2		
	$\begin{pmatrix} 2 & -1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \end{pmatrix}$		Give B1 for $\mathbf{M} = \mathbf{P}^{-1} \mathbf{D} \mathbf{P}$	
	$= \begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{pmatrix}$			
	$\begin{pmatrix} 2 & 1 & 12 \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \end{pmatrix}$			
	$= \begin{pmatrix} 2 & 1 & 12 \\ 1 & 0 & 3 \\ 3 & -1 & 6 \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \\ 1 & -8 & 2 \\ 1 & -5 & 1 \end{pmatrix}$		(2 -1 4)(-1 6 -1)	
	(3 -1 6)(1 -5 1)		$\operatorname{or} \begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 1 \\ \end{pmatrix} \begin{pmatrix} -1 & 6 & -1 \\ -1 & 8 & -2 \\ \end{pmatrix}$	
		M1	$\begin{pmatrix} 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & -15 & 3 \end{pmatrix}$	
	(11 -56 12)		Good attempt at multiplying two matrices (no more than 3	
	$= \begin{pmatrix} 11 & -56 & 12 \\ 2 & -9 & 2 \\ 2 & -4 & 1 \end{pmatrix}$		errors), leaving third matrix in	
	$\begin{pmatrix} 2 & -4 & 1 \end{pmatrix}$	A2	correct position	
			Give A1 for five elements correct	
			Correct M implies B2M1A2	
			5-8 elements correct implies B2M1A1	
• •	Characteristic equation is $(\lambda - 1)(\lambda + 1)(\lambda - 3) = 0$	B1	In any correct form (Condone omission of =0)	
	$\lambda^3 - 3\lambda^2 - \lambda + 3 = 0$	M1 A1	M satisfies the characteristic equation	
	$\mathbf{M}^3 = 3\mathbf{M}^2 + \mathbf{M} - 3\mathbf{I}$		Correct expanded form (Condone omission of I)	
	$\mathbf{M}^4 = 3\mathbf{M}^3 + \mathbf{M}^2 - 3\mathbf{M}$	M1		
	$= 3(3\mathbf{M}^2 + \mathbf{M} - 3\mathbf{I}) + \mathbf{M}^2 - 3\mathbf{M}$	A1		
	$=10\mathbf{M}^2-9\mathbf{I}$	5	5	
	a = 10, b = 0, c = -9			

4756	Mark Scher	me	June 20. Rainscho
4 (i)	$\sinh^2 x = \left[\frac{1}{2}(e^x - e^{-x})\right]^2 = \frac{1}{4}(e^{2x} - 2 + e^{-2x})$	B1 B1 B1 ag 3	For completion
	OR $\cosh x + \sinh x = \frac{1}{2}(e^x + e^{-x}) + \frac{1}{2}(e^x - e^{-x}) = e^x$ B1 $\cosh x - \sinh x = \frac{1}{2}(e^x + e^{-x}) - \frac{1}{2}(e^x - e^{-x}) = e^{-x}$ B1 $\cosh^2 x - \sinh^2 x = e^x \times e^{-x} = 1$ B1		Completion
(ii)	$4 \sinh^2 x + 9 \sinh x - 9 = 0$	M1 M1 A1A1 A1A1 ft 6	(M0 for $1-\sinh^2 x$) Obtaining a value for $\sinh x$ Exact logarithmic form <i>Dep on</i> <i>M1M1</i> Max A1 if any extra values given
	OR $2e^{4x} + 9e^{3x} - 22e^{2x} - 9e^{x} + 2 = 0$ $(2e^{2x} - 3e^{x} - 2)(e^{2x} + 6e^{x} - 1) = 0$ M1 $e^{x} = 2, -3 + \sqrt{10}$ A1A1 $x = \ln 2, \ln(-3 + \sqrt{10})$ A1A1 ft		Quadratic and / or linear factors Obtaining a value for e^x Ignore extra values Dependent on M1M1 Max A1 if any extra values given Just $x = \ln 2$ earns
(iii)	$\frac{dy}{dx} = 8\cosh x \sinh x + 9\cosh x$ = $\cosh x(8\sinh x + 9)$ = 0 only when $\sinh x = -\frac{9}{8}$ $\cosh^2 x = 1 + (-\frac{9}{8})^2 = \frac{145}{64}$ $y = 4 \times \frac{145}{64} + 9 \times (-\frac{9}{8}) = -\frac{17}{16}$	B1 B1 M1 A1 4	MOM1A1A0A0A0Any correct form or $y = (2 \sinh x + \frac{9}{4})^2 + \dots (-\frac{17}{16})$ Correctly showing there is only one solutionExact evaluation of y or $\cosh^2 x$ or $\cosh 2x$ Give B2 (replacing M1A1) for -1.06 or better
(iv)	$\int_{0}^{J_{0}} = \left[2x + \sinh 2x + 9\cosh x \right]_{0}^{\ln 2}$ $\left[2x + \sinh 2x + 9\cosh x \right]_{0}^{\ln 2}$	M1 A2 M1	Expressing in integrable form Give A1 for two terms correct $\sinh(2\ln 2) = \frac{1}{2}(4-\frac{1}{4})$
	21 2 33	A1 ag 5	Must see both terms for M1 Must also see $\cosh(\ln 2) = \frac{1}{2}(2 + \frac{1}{2})$ for A1

4756	Mark Scher	ne	June 20 Expanded exponential form (M0 if the 2 is omitted) Give A1 for three terms correct	My Nams
5 (1)	OR $\int_{0}^{\ln 2} (e^{2x} + 2 + e^{-2x} + \frac{9}{2}(e^{x} - e^{-x})) dx$ M1 = $\left[\frac{1}{2}e^{2x} + 2x - \frac{1}{2}e^{-2x} + \frac{9}{2}e^{x} + \frac{9}{2}e^{-x} \right]_{0}^{\ln 2}$ A2 = $\left(2 + 2\ln 2 - \frac{1}{8} + 9 + \frac{9}{4} \right) - \left(\frac{1}{2} - \frac{1}{2} + \frac{9}{2} + \frac{9}{2} \right)$ M1 = $2\ln 2 + \frac{33}{8}$ A1 ag		Expanded exponential form (M0 if the 2 is omitted) Give A1 for three terms correct $e^{2\ln 2} = 4$ and $e^{-2\ln 2} = \frac{1}{4}$ both seen Must also see $e^{\ln 2} = 2$ and $e^{-\ln 2} = \frac{1}{2}$ for A1	-ud.com
5 (i)	$\lambda = 0.5$ $\lambda = 3$ $\lambda = 5$	B1B1B1 3		
(ii)	Ellipse	B1 1		
(iii)	$y = \sqrt{2}\cos(\theta - \frac{1}{4}\pi)$ Maximum $y = \sqrt{2}$ when $\theta = \frac{1}{4}\pi$	M1 A1 ag 2	or $\sqrt{2}\sin(\theta + \frac{1}{4}\pi)$	
	OR $\frac{dy}{d\theta} = -\sin\theta + \cos\theta = 0$ when $\theta = \frac{1}{4}\pi$ M1 $y = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$ A1			
	$x^{2} + y^{2} = \lambda^{2} \cos^{2} \theta - 2 \cos \theta \sin \theta + \frac{1}{\lambda^{2}} \sin^{2} \theta$ $+ \cos^{2} \theta + 2 \cos \theta \sin \theta + \sin^{2} \theta$ $= (\lambda^{2} + 1)(1 - \sin^{2} \theta) + (\frac{1}{\lambda^{2}} + 1) \sin^{2} \theta$ $= 1 + \lambda^{2} + (\frac{1}{\lambda^{2}} - \lambda^{2}) \sin^{2} \theta$ When $\sin^{2} \theta = 0$, $x^{2} + y^{2} = 1 + \lambda^{2}$ When $\sin^{2} \theta = 1$, $x^{2} + y^{2} = 1 + \frac{1}{\lambda^{2}}$ Since $0 \le \sin^{2} \theta \le 1$, distance from O, $\sqrt{x^{2} + y^{2}}$, is between $\sqrt{1 + \frac{1}{\lambda^{2}}}$ and $\sqrt{1 + \lambda^{2}}$	M1 M1 A1 ag M1 M1 A1 ag 6	Using $\cos^2 \theta = 1 - \sin^2 \theta$	
(v)	When $\lambda = 1$, $x^2 + y^2 = 2$ Curve is a circle (centre O) with radius $\sqrt{2}$	M1 A1 2		

4757 (FP3) Further Applications of Advanced Mathematics

			June 20 nced Mathematics	3
4757	Mark Scher	ne	June 20. June 20.	Norths and the second
4757	(FP3) Further Applications o	f Adva	nced Mathematics	JOUD.COM
1 (i)	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 6\\8\\5 \end{pmatrix} \times \begin{pmatrix} 10\\-5\\1 \end{pmatrix} = \begin{pmatrix} 33\\44\\-110 \end{pmatrix}$	B2	<i>Ignore subsequent working</i> Give B1 for one element correct SC1 for minus the correct vector	
	ABC is $3x + 4y - 10z = -9 + 20 - 20$ 3x + 4y - 10z + 9 = 0	M1 A1	For $3x + 4y - 10z$ Accept $33x + 44y - 110z = -99$ etc	
(ii)	Distance is $\frac{3 \times 5 + 4 \times 4 - 10 \times 8 + 9}{\sqrt{3^2 + 4^2 + 10^2}}$	M1 A1 ft	Using distance formula (or other complete method)	
	$=(-) \frac{40}{\sqrt{125}} (=\frac{8}{\sqrt{5}})$	A1	Condone negative answer Accept a.r.t. 3.58	
(iii)	$\overrightarrow{AB} \times \overrightarrow{CD} = \begin{pmatrix} 6\\8\\5 \end{pmatrix} \times \begin{pmatrix} -2\\4\\5 \end{pmatrix} = \begin{pmatrix} 20\\-40\\40 \end{pmatrix} \begin{bmatrix} = 20 \begin{pmatrix} 1\\-2\\2 \end{bmatrix} \end{bmatrix}$	M1	Evaluating $\overrightarrow{AB} \times \overrightarrow{CD}$ or method for finding end-points of common perp PQ	
	Distance is $\overrightarrow{AC} \cdot \hat{\mathbf{n}} = \frac{\begin{pmatrix} 10\\ -5\\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1\\ -2\\ 2 \end{pmatrix}}{\sqrt{1^2 + 2^2 + 2^2}}$	A1	or $P(\frac{3}{2}, 11, \frac{23}{4})$ & $Q(\frac{71}{18}, \frac{55}{9}, \frac{383}{36})$	
		M1	or $\overline{PQ} = (\frac{22}{9}, -\frac{44}{9}, \frac{44}{9})$	
	$=\frac{22}{3}$	A1	L I I I I I I I I I I I I I I I I I I I	
(iv)	Volume is $\frac{1}{6}(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}$	M1 A1	Scalar triple product	
	$=\frac{1}{6} \begin{pmatrix} 33\\44\\-110 \end{pmatrix} \cdot \begin{pmatrix} 8\\-1\\6 \end{pmatrix}$	M1		
	$=(-)\frac{220}{3}$	A1 4	Accept a.r.t. 73.3	
(v)	E is $(-3+10\lambda, 5-5\lambda, 2+\lambda)$ $3(-3+10\lambda)-2(2+\lambda)+5=0$	M1		
	$\lambda = \frac{2}{7}$ F is $(-3+8\mu, 5-\mu, 2+6\mu)$	A1		
	$3(-3+8\mu) - 2(2+6\mu) + 5 = 0$	M1		
	$\mu = \frac{2}{3}$ Since $0 < \lambda < 1$, E is between A and C	A1		
	Since $0 < \mu < 1$, F is between A and D	B1	5	

4757	Mark Sche	mo		$(13\frac{61}{63})$ ft if numerical	14 13 19
4/3/		IIIe		Julie 200 9	the s
(vi)	$V_{\text{ABEF}} = \frac{1}{6} (\overrightarrow{\text{AB}} \times \overrightarrow{\text{AE}}) \cdot \overrightarrow{\text{AF}}$	M1			HOULD CO.
	$= \frac{1}{6} \lambda \mu (\overline{AB} \times \overline{AC}) \cdot \overline{AD}$				Th
	$= \lambda \mu V_{ABCD}$	A1		$(13\frac{61}{63})$ ft if numerical	
	$=\frac{4}{21}V_{ABCD}$				
	Ratio of volumes is $\frac{4}{21}$: $\frac{17}{21}$	M1		Finding ratio of volumes of two	
	= 4 : 17	A1 ag		parts	
		Aray	4	SC1 for 4 : 17 deduced from $\frac{4}{21}$	
		 		without working	
2 (i)	$\frac{\partial g}{\partial x} = 6z - 2(x + 2y + 3z) = -2x - 4y$	M1 A1		Partial differentiation Any correct form, ISW	
	$\frac{\partial g}{\partial y} = -4(x+2y+3z)$				
		A1			
	$\frac{\partial g}{\partial z} = 6x - 6(x + 2y + 3z) = -12y - 18z$	A1			
			4		
(ii)	At P, $\frac{\partial g}{\partial r} = 16$, $\frac{\partial g}{\partial v} = -4$, $\frac{\partial g}{\partial z} = 36$	M1 A1		Evaluating partial derivatives at	
	0, 0, 02			All correct	
	Normal line is $\mathbf{r} = \begin{pmatrix} 7 \\ -7.5 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ 9 \end{pmatrix}$	A1 ft			
			3	Condone omission of ' r = '	
(iii)	$\delta g \approx 16 \delta x - 4 \delta y + 36 \delta z$	M1		Alternative:	
	If $\overrightarrow{PQ} = \lambda \begin{pmatrix} 4 \\ -1 \\ 9 \end{pmatrix}$,	M1		M3 for substituting $x = 7 + 4\lambda$,	
	$\prod PQ = \lambda \begin{bmatrix} -1 \\ 9 \end{bmatrix},$			into $g = 125 + h$ and neglecting	
	$\delta g \approx 16(4\lambda) - 4(-\lambda) + 36(9\lambda) (= 392\lambda)$	A1 ft		λ^2 A1 ft for linear equation in	
	$h = \delta g$, so $h \approx 392\lambda$	M1		λ and h	
	$\overline{PQ} \approx \frac{h}{392} \begin{pmatrix} 4\\-1\\9 \end{pmatrix}$, so $\mathbf{n} = \frac{1}{392} \begin{pmatrix} 4\\-1\\9 \end{pmatrix}$			A1 for n correct	
	$392 \begin{pmatrix} 1 \\ 9 \end{pmatrix}$, $301 = 392 \begin{pmatrix} 1 \\ 9 \end{pmatrix}$	A1			
			5		
(iv)	Require $\frac{\partial g}{\partial r} = \frac{\partial g}{\partial v} = 0$	M1			
	-2x - 4y = 0 and $x + 2y + 3z = 0$				
	x + 2y = 0 and z = 0	M1		Useful manipulation using both	
	$g(x, y, z) = 0 - 0^2 = 0 \neq 125$	M1		eqns	
	Hence there is no such point on S	A1	4	Showing there is no such point on S	
				Fully correct proof	
(v)	Require $\frac{\partial g}{\partial \tau} = 0$	N/1			
	02	M1		∂α ∂α	
	and $\frac{\partial g}{\partial y} = 5 \frac{\partial g}{\partial x}$	M1		Implied by $\frac{\partial g}{\partial x} = \lambda$, $\frac{\partial g}{\partial y} = 5\lambda$	
	-4x - 8y - 12z = 5(-2x - 4y)	M1		This M1 can be awarded for $-2x-4y=1$ and $-4x-8y-12z=5$	

4757	Mark Scher	~~~		<i>When the product of the second seco</i>	14 13 19
4/3/		ne		Julie Zulie	th _{SC/2}
	$y = -\frac{3}{2}z$ and $x = 5z$	A1		Or $z = -\frac{2}{3}y$ and $x = -\frac{10}{3}y$ Or $y = -\frac{3}{10}x$ and $z = \frac{1}{5}x$.oud.com
	$6(5z)z - (5z)^{2} = 125$ $z = \pm 5$ Points are (25, -7.5, 5) and (-25, 7.5, -5)	M1 M1 A1 A1 ft	8	or $x = -\frac{5}{4}\lambda$, $y = \frac{3}{8}\lambda$, $z = -\frac{1}{4}\lambda$ or $x : y : z = 10 : -3 : 2$ Substituting into $g(x, y, z) = 125$ Obtaining one value of <i>x</i> , <i>y</i> , <i>z</i> or λ Dependent on previous M1 ft is minus the other point, provided all M marks have been earned	
3 (i)	$\dot{x}^{2} + \dot{y}^{2} = (24t^{2})^{2} + (18t - 8t^{3})^{2}$ $= 576t^{4} + 324t^{2} - 288t^{4} + 64t^{6}$ $= 324t^{2} + 288t^{4} + 64t^{6}$ $= (18t + 8t^{3})^{2}$	B1 M1 A1 ag			
	Arc length is $\int_{0}^{2} (18t + 8t^{3}) dt$ $= \left[9t^{2} + 2t^{4} \right]_{0}^{2}$ $= 68$	M1 A1 A1	6	Note $\int_{0}^{2} (18 + 8t^{3}) dt = \left[18t + 2t^{4} \right]_{0}^{2} = 68$	
(ii)	Curved surface area is $\int 2\pi y ds$	M1		earns M1A0A0	
	$= \int_0^2 2\pi (9t^2 - 2t^4)(18t + 8t^3) dt$	M1 A1		Using $ds = (18t + 8t^3) dt$ Correct integral expression including limits (may be implied	
	$= \int_{0}^{2} \pi (324t^{3} + 72t^{5} - 32t^{7}) dt$ $= \pi \left[81t^{4} + 12t^{6} - 4t^{8} \right]_{0}^{2}$	M1		by later work)	
	$= 1040\pi (\approx 3267)$	M1 A1	6		
(iii)	$\kappa = \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{(\dot{x}^2 + \dot{y}^2)^{\frac{3}{2}}} = \frac{(24t^2)(18 - 24t^2) - (48t)(18t - 8t^3)}{(18t + 8t^3)^3}$	M1 A1A1	U	Using formula for κ (or ρ) For numerator and denominator	
	$=\frac{48t^{2}(9-12t^{2}-18+8t^{2})}{8t^{3}(9+4t^{2})^{3}}=\frac{-48t^{2}(9+4t^{2})}{8t^{3}(9+4t^{2})^{3}}$ -6	M1		Simplifying the numerator	
	$=\frac{-6}{t(4t^2+9)^2}$	A1 ag	5		

4757	Mark Scher	me		June 20	AN ANSIIS
(iv)	When $t = 1$, $x = 8$, $y = 7$, $\kappa = -\frac{6}{169}$				scioud
	$\rho = (-)\frac{169}{6}$	B1	ļ		COM
	$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = \frac{18t - 8t^3}{24t^2} = \frac{10}{24}$ $\hat{\mathbf{n}} = \begin{pmatrix} \frac{5}{13} \\ -\frac{12}{13} \end{pmatrix}$	M1 M1 A1		Finding gradient (or tangent vector) Finding direction of the normal	
	$\mathbf{c} = \begin{pmatrix} 8 \\ 7 \end{pmatrix} + \frac{169}{6} \begin{pmatrix} 5/13 \\ -12/13 \end{pmatrix}$ Centre of curvature is $(18\frac{5}{6}, -19)$	M1		Correct unit normal (either direction)	
		A1A1	7		
	Commutative: $x * y = y * x$ (for all x, y) Associative: $(x * y) * z = x * (y * z)$ (for all x, y, z)	B1 B2	3	Accept e.g. 'Order does not matter' Give B1 for a partial explanation, e.g. 'Position of brackets does not matter'	
(ii)	$2(x + \frac{1}{2})(y + \frac{1}{2}) - \frac{1}{2} = 2xy + x + y + \frac{1}{2} - \frac{1}{2}$ $= 2xy + x + y = x * y$	B1 ag	1	Intermediate step required	
(iii) (A)	If $x, y \in S$ then $x > -\frac{1}{2}$ and $y > -\frac{1}{2}$	M1			
	$x + \frac{1}{2} > 0$ and $y + \frac{1}{2} > 0$, so $2(x + \frac{1}{2})(y + \frac{1}{2}) > 0$ $2(x + \frac{1}{2})(y + \frac{1}{2}) - \frac{1}{2} > -\frac{1}{2}$, SO $x * y \in S$	A1 A1	3		
(<i>B</i>)	0 is the identity since $0 * x = 0 + x + 0 = x$	B1 B1			
	If $x \in S$ and $x * y = 0$ then 2xy + x + y = 0 -x	M1		or $2(x+\frac{1}{2})(y+\frac{1}{2}) - \frac{1}{2} = 0$	
	$y = \frac{-x}{2x+1}$	A1	ļ	or $y + \frac{1}{2} = \frac{1}{4(x + \frac{1}{2})}$	
	$y + \frac{1}{2} = \frac{1}{2(2x+1)} > 0$ (since $x > -\frac{1}{2}$) so $y \in S$	M1	ļ		
	S is closed and associative; there is an identity; and every element of S has an inverse in S	A1	6	Dependent on M1A1M1	
(iv)	If $x * x = 0$, $2x^2 + x + x = 0$ x = 0 or -1	M1			
	0 is the identity (and has order 1) -1 is not in S	A1 A1	3		

4757	I						Mark Scher	ne	June 20	My Asens Sinscloud.com		
(v)	4 * 6 = 48 + 4 + 6 = 58 = 56 + 2 = 7 × 8 + 2 So $4 \circ 6 = 2$					B1 B1 ag	2		SOUG.COM			
(vi)	Element Order	0 1		2 6	4 3	5 3	6 2		В3	3	Give B2 for 4 correct B1 for 2 correct	
(vii)	$\{0\}, G$ $\{0, 6\}$ $\{0, 4, 5\}$								B1 B1 B1	3	<i>Condone omission of G</i> If more than 2 non-trivial subgroups are given, deduct 1 mark (from final B1B1) for each non-trivial subgroup in excess of 2	

Pre-multiplication by transition matrix

4757 Pre-ma	Mark Scher Sultiplication by transition matrix	me	Give B1 for two columns correct	N.C.
5 (i)	$\mathbf{P} = \begin{pmatrix} 0.1 & 0.7 & 0.1 \\ 0.4 & 0.2 & 0.6 \\ 0.5 & 0.1 & 0.3 \end{pmatrix}$	B2 2		ON
(ii)	$\mathbf{P}^{6} \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 0.328864 \\ 0.381536 \\ 0.2896 \end{pmatrix}$ P(<i>B</i> used on 7th day) = 0.3815	M1 M1 M1 A1 4	Using P^6 (or P^7) For matrix of initial probabilities For evaluating matrix product Accept 0.381 to 0.382	
(iii)	$0.328864 \times 0.1 + 0.381536 \times 0.2 + 0.2896 \times 0.3$ = 0.1961	M1 M1 A1 3	Using diagonal elements from P Correct method <i>Accept a.r.t. 0.196</i>	
(iv)	$\mathbf{P}^{3} = \begin{pmatrix} 0.352 & 0.328 & 0.304 \\ 0.364 & 0.404 & 0.372 \\ 0.284 & 0.268 & 0.324 \end{pmatrix}$ $0.328864 \times 0.352 + 0.381536 \times 0.404 + 0.2896 \times 0.324$ $= 0.3637$	M1 M1 M1 A1 4	For evaluating P^3 Using diagonal elements from P^3 Correct method Accept a.r.t. 0.364	
(v)	$\mathbf{Q} = \left(\begin{array}{ccc} 0.3816 & 0.3816 & 0.3816 \\ 0.2895 & 0.2895 & 0.2895 \end{array} \right)$	B1 B1 B1	Deduct 1 if not given as a (3×3) matrix Deduct 1 if not 4 dp	
	0.3289, 0.3816, 0.2895 are the long-run probabilities for the routes <i>A</i> , <i>B</i> , <i>C</i>	B1 4	Accept 'equilibrium probabilities'	
(vi)	$ \begin{pmatrix} 0.1 & 0.7 & a \\ 0.4 & 0.2 & b \\ 0.5 & 0.1 & c \end{pmatrix} \begin{pmatrix} 0.4 \\ 0.2 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.4 \end{pmatrix} $	M1		
	0.04 + 0.14 + 0.4a = 0.4, so $a = 0.550.16 + 0.04 + 0.4b = 0.2$, so $b = 00.2 + 0.02 + 0.4c = 0.4$, so $c = 0.45$	M1 A2	Obtaining a value for <i>a, b</i> or <i>c</i> Give A1 for one correct	
	After <i>C</i> , routes <i>A</i> , <i>B</i> , <i>C</i> will be used with probabilities 0.55, 0, 0.45	4		
(vii)	$0.4 \times 0.1 + 0.2 \times 0.2 + 0.4 \times 0.45$ = 0.26	M1 M1 A1 3	Using long-run probs 0.4, 0.2, 0.4 Using diag elements from new matrix	

Post-multiplication by transition matrix

4757	Mark Scher	me	Give B1 for two rows correct	141 13815
Post-n	nultiplication by transition matrix			Iscioud.co
5 (i)	$\mathbf{P} = \begin{pmatrix} 0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1 \\ 0.1 & 0.6 & 0.3 \end{pmatrix}$	B2 2		JI
(ii)	$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \mathbf{P}^{6} = (0.328864, 0.381536, 0.2896)$ P(<i>B</i> used on 7th day) = 0.3815	M1 M1 M1 A1 4	Using P^6 (or P^7) For matrix of initial probabilities For evaluating matrix product Accept 0.381 to 0.382	
(iii)	$0.328864 \times 0.1 + 0.381536 \times 0.2 + 0.2896 \times 0.3$ = 0.1961	M1 M1 A1 3	Using diagonal elements from P Correct method <i>Accept a.r.t. 0.196</i>	
(iv)	$\mathbf{P}^{3} = \begin{pmatrix} 0.352 & 0.364 & 0.284 \\ 0.328 & 0.404 & 0.268 \\ 0.304 & 0.372 & 0.324 \end{pmatrix}$ $0.328864 \times 0.352 + 0.381536 \times 0.404 + 0.2896 \times 0.324$ $= 0.3637$	M1 M1 M1 A1 4	For evaluating P ³ Using diagonal elements from P ³ Correct method <i>Accept a.r.t. 0.364</i>	
	$\mathbf{Q} = \begin{pmatrix} 0.3289 & 0.3816 & 0.2895 \\ 0.3289 & 0.3816 & 0.2895 \\ 0.3289 & 0.3816 & 0.2895 \end{pmatrix}$ 0.3289, 0.3816, 0.2895 are the long-run probabilities for the routes <i>A</i> , <i>B</i> , <i>C</i>	B1B1B1 B1	Deduct 1 if not given as a (3×3) matrix Deduct 1 if not 4 dp Accept 'equilibrium probabilities'	
(vi)	$ (0.4 0.2 0.4) \begin{pmatrix} 0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1 \\ a & b & c \end{pmatrix} = (0.4 0.2 0.4) $	M1		
	0.04 + 0.14 + 0.4a = 0.4, so $a = 0.550.16 + 0.04 + 0.4b = 0.2$, so $b = 00.2 + 0.02 + 0.4c = 0.4$, so $c = 0.45$	M1 A2 4	Obtaining a value for <i>a, b</i> or <i>c</i> Give A1 for one correct	
	After <i>C</i> , routes <i>A</i> , <i>B</i> , <i>C</i> will be used with probabilities 0.55, 0, 0.45	M1	Using long-run probs 0.4, 0.2,	
	$0.4 \times 0.1 + 0.2 \times 0.2 + 0.4 \times 0.45 = 0.26$	M1 A1 3	0.4 Using diag elements from new matrix	

4758 Differential Equations

1 (i)	$2\ddot{x} = 2g - 8(x + 0.25g) - 2kv$	M1	N2L equation with all forces using given expressions for tension and resistance	
()	Weight positive as down, tension negative as up.	B1		
	Resistance negative as opposes motion.	B1		
	$\Rightarrow \ddot{x} + k\dot{x} + 4x = 0$	E1	Must follow correct N2L equation	4
(ii)	$x = A\cos 2t + B\sin 2t$	B1		
	$t = 0, x = 0.1 \Longrightarrow A = 0.1$	M1	Find the coefficient of cos	
	$\dot{x} = -2A\sin 2t + 2B\cos 2t$ so $t = 0, \dot{x} = 0 \Longrightarrow B = 0$	M1	Find the coefficient of sin	
	$x = 0.1 \cos 2t$	A1	сао	
(iii)	$\alpha^2 + 2\alpha + 4 = 0$	N/1	Auxiliant equation	4
(11)		M1	Auxiliary equation	
	$\alpha = -1 \pm \sqrt{3} j$	A1		
		M1	CF for complex roots	
	$x = e^{-t} \left(C \cos \sqrt{3} t + D \sin \sqrt{3} t \right)$	F1	CF for their roots	
	$t = 0, x = 0.1 \Longrightarrow C = 0.1$	M1	Condition on x	
	$\dot{x} = -e^{-t} \left(C \cos \sqrt{3} t + D \sin \sqrt{3} t \right)$			
	$+ e^{-t} \left(-\sqrt{3} C \sin \sqrt{3} t + \sqrt{3} D \cos \sqrt{3} t \right)$	M1	Differentiate (product rule)	
	$0 = -C + \sqrt{3} D$	M1	Condition on \dot{x}	
	$D = \frac{0.1}{\sqrt{3}}$			
	$x = 0.1 \operatorname{e}^{-t} \left(\cos \sqrt{3} t + \frac{1}{\sqrt{3}} \sin \sqrt{3} t \right)$	A1	сао	
	0.1	B1	Curve through (0,0.1) with zero gradient	
		B1	Oscillating	
		B1	Asymptote $x = 0$	
				11
(iv)	$k^2 - 4 \cdot 1 \cdot 4 > 0$	M1	Use of discriminant]
		A1	Correct inequality	
	(As k is positive) $k > 4$	A1	Accept $k < -4$ in addition (but not $k > -4$)	
	0.1	B1	Curve through (0,0.1) Decays without oscillating (at most one	
		B1	intercept with positive <i>t</i> axis)	
				5

4758 M	ark Schem	e June 20 Mains Any valid method Condition on <i>x</i>
$2 \qquad r = A e^{-2t}$		
$\begin{array}{l} 2 \\ \text{(i)} \end{array} x = A \mathrm{e}^{-2t} \end{array}$	M1	Any valid method
$t = 0, x = 8 \Longrightarrow A = 8$	M1	Condition on <i>x</i>
$x = 8 e^{-2t}$	A1	3
(ii) $\dot{y} + y = 16 e^{-2t}$	M1	Substitute for x
$\alpha + 1 = 0 \Longrightarrow \alpha = -1$	M1	Auxiliary equation
$CF \ y = B \mathrm{e}^{-t}$	A1	
$PI \ y = a \mathrm{e}^{-2t}$	B1	
$-2ae^{-2t} + ae^{-2t} = 16e^{-2t}$	M1	Differentiate and substitute
a = -16	A1	сао
GS $y = -16 e^{-2t} + B e^{-t}$	F1	Their PI + CF (with one arbitrary
$t = 0, y = 0 \Longrightarrow B = 16$	M1	constant) Condition on y
$y = 16(e^{-t} - e^{-2t})$	F1	Follow a non-trivial GS
Alternative mark scheme for first 7 marks.	:	
	M1	Substitute for <i>x</i>
$I = e^{t}$	M1 A1	Attempt integrating factor IF correct
$d(y e^{t})/dt = 16e^{-t}$	B1	
	M1	Integrate
$y e^{t} = -16e^{-t} + B$ $y = -16e^{-2t} + Be^{-t}$	A1	cao Divide hu their l (much divide constant)
$y = -76e^{-1} + Be^{-1}$	F1	Divide by their I (must divide constant)
iii) $y = 16 e^{-t} (1 - e^{-t})$	M1	Or equivalent (NB e $^{-t}$ > e $^{-2t}$ needs justifying)
$16e^{-t} > 0$ and $t > 0 \Longrightarrow e^{-t} < 1$ hence $y > 0$	E1	Complete argument
y y	B1	
\frown	B1	General shape consistent with their solution and $y > 0$
	B1	Tends to zero
T		5
iv) $\frac{d}{dt}(x+y+z) = (-2x) + (2x-y) + (y) = 0$	M1	Consider sum of DE's
$ dt \Rightarrow x + y + z = c $	E1	
Hence initial conditions $\Rightarrow x + y + z = 8$	E1	
z = 8 - x - y	M1	Substitute for x and y and find z
$z = 8(1 - 2e^{-t} + e^{-2t}) = 8(1 - e^{-t})^2$	E1	Convincingly shown (x, y must be correct)
		5
(v) $0.99 \times 8 = 8(1 - e^{-t})^2$	B1	Correct equation (any form)
t = -0.690638 or 5.29581		
99% is Z after 5.30 hours	B1	Accept value in [5.29, 5.3]
		2

475	8 Mark	Sche	eme June 2 Divide by <i>t</i> (condone LHS only) Attempt integrating factor	Una.
3 i)	$\dot{y} + \frac{k}{t}y = 1$	M1	Divide by <i>t</i> (condone LHS only)	
	$I = \exp\left(\int \frac{k}{t} \mathrm{d}t\right) = \exp\left(k \ln t\right) = t^k$	M1	Attempt integrating factor	
		A1	Integrating factor	
	$t^k \dot{y} + kt^{k-1} y = t^k$	F1	Multiply DE by their I	
	$\frac{\mathrm{d}}{\mathrm{d}t}\left(yt^{k}\right) = t^{k}$	M1	LHS	
	$yt^k = \int t^k dt$	M1	Integrate	
	$=\frac{1}{k+1}t^{k+1} + A$	A1	cao (including constant)	
	$y = \frac{1}{k+1}t + At^{-k}$	F1	Divide by their I (must divide constant)	
	$t = 1, y = 0 \Longrightarrow 0 = \frac{1}{k+1} + A \Longrightarrow A = -\frac{1}{k+1}$	M1	Use condition	
	$y = \frac{1}{k+1} \left(t - t^{-k} \right)$	F1	Follow a non-trivial GS	
				10
i)	$y = \frac{1}{3} \left(t - t^{-2} \right)$			
	y	B1 B1 B1	Shape consistent with their solution for $t \ge 1$ Passes through (1, 0) Behaviour for large <i>t</i>	
	t		-	
	1			
				3
i)	$yt^{-1} = \int t^{-1} dt$	M1	Follow their (i)	
	$= \ln t + B$	A1	сао	
	$y = t \left(\ln t + B \right)$	F1	Divide by their <i>I</i> (must divide constant)	
	$t = 1, y = 0 \Longrightarrow B = 0 \Longrightarrow y = t \ln t$	A1	сао	4
')	$\frac{\mathrm{d}y}{\mathrm{d}t} = 1 + t^{-1}\sin y$	M1	Rearrange DE (may be implied)	
	d <i>t</i> t y dy/dt			
	1 0 1	M1	Use algorithm	
	1.1 0.1 1.0908 1.2 0.2091	A1 A1	y(1.1) y(1.2)	
				4
)	0.2138 as smaller step size Decreasing step length has increased	B1	Must give reason	
	estimate. Assuming this estimate is more	F 4 4	Identify offerst of descentions store bound	
	accurate, decreasing step length further will increase estimate further, so true value	M1	Identify effect of decreasing step length	
	likely to be greater.	A 4	Convincing orgument	
	Hence underestimates.	A1	Convincing argument	
	Alternative mark scheme for last 2 marks:			
	dy/dt seems to be increasing, hence Euler's method	M1	Identify derivative increasing	
	will underestimate true value + sketch (or	A1	Convincing argument	
	explanation).			3

4758 Mark Schem	Ie	۲۰۰۰ June 20 Differentiate first equation	nymai
$\ddot{x} = 4\dot{x} - 6\dot{y} - 9\cos t$	M1	Differentiate first equation	
(i) = $4\dot{x} - 6(3x - 5y - 7\sin t) - 9\cos t$	M1	Substitute for \dot{y}	
$y = \frac{1}{6} (4x - \dot{x} - 9\sin t)$	M1	y in terms of x, \dot{x}	
$\ddot{x} = 4\dot{x} - 18x + 5(4x - \dot{x} - 9\sin t) + 42\sin t - 9\cos t$	M1	Substitute for y	
$\ddot{x} + \dot{x} - 2x = -3\sin t - 9\cos t$	E1	LHS	
	E1	RHS	
(ii) $\alpha^2 + \alpha - 2 = 0$	M1	Auxiliary equation	6
$\alpha + \alpha - 2 = 0$ $\alpha = 1 \text{ or } -2$	A1		
$CF x = A e^{t} + B e^{-2t}$	F1	CF for their roots	
$PI \ x = a\cos t + b\sin t$	B1	PI of this form	
(-ac-bs)+(-as+bc)-2(ac+bs)=-3s-9c	M1	Differentiate twice and substitute	
-a+b-2a=-9	M1	Compare coefficients (2 equations)	
-b - a - 2b = -3	M1	Solve (2 equations)	
$\Rightarrow a = 3, b = 0$	A1		
$x = 3\cos t + Ae^t + Be^{-2t}$	F1	Their PI + CF (with two arbitrary constants)	
			9
(iii) $y = \frac{1}{6} (4x - \dot{x} - 9\sin t)$	M1	y in terms of x, \dot{x}	
$= \frac{1}{6} \Big(12\cos t + 4Ae^{t} + 4Be^{-2t} + 3\sin t - Ae^{t} + 2Be^{-2t} - 9\sin t \Big)$) M1	Differentiate x and substitute	
$y = 2\cos t - \sin t + \frac{1}{2}Ae^{t} + Be^{-2t}$	A1	Constants must correspond with those in <i>x</i>	3
(iv) x bounded $\Rightarrow A = 0$	M1	Identify coefficient of exponentially growing term must be zero	
\Rightarrow y bounded	E1	Complete argument	
			2
(v) $t = 0, y = 0 \Longrightarrow 0 = B + 2 \Longrightarrow B = -2$	M1	Condition on y	
$x = 3\cos t - 2e^{-2t}$, $y = 2\cos t - \sin t - 2e^{-2t}$	F1	Follow their (non-trivial) general solutions	
$x = 3\cos t$ $y = 2\cos t - \sin t$	A1 A1	cao	

Q 1		mark	comment	sub
(i)	N2L \uparrow 1000-100×9.8=100 <i>a</i> <i>a</i> = 0.2 so 0.2 m s ⁻² upwards	M1 B1 A1	N2L. Accept $F = mga$ and no weight Weight correct (including sign). Allow if seen. Accept ± 0.2 . Ignore units and direction	3
(ii)	$T_{\rm BA} - 980 = 100 \times 0.8$	M1	N2L. <i>F</i> = <i>ma</i> . Weight present, no extras. Accept sign errors.	
	so tension is 1060 N	A1		2
(iii)	$T_{\rm BA}\cos 30 = 1060$	M1	Attempt to resolve their (ii). Do not award for their 1060 resolved unless all forces present and all resolutions needed are attempted. If start again allow no weight. Allow $\sin \leftrightarrow \cos$. No extra forces. Condone sign errors	
	$T_{\rm BA} = 1223.98$ so 1220 N (3 s. f.)	A1 A1	FT their 1060 only cao	3
		8		3

Q 2		mark	comment	sub
(i)		B1	Sketch. O, i , j and r (only require correct quadrant.) Vectors must have arrows. Need not label r .	1
(ii)	$\sqrt{4^2 + (-5)^2}$ = $\sqrt{41}$ or 6.4031 so 6.40 (3 s. f.)	M1 A1	Accept $\sqrt{4^2-5^2}$	
	Need $180 - \arctan(\frac{4}{5})$ 141.340 so 141°	M1 A1	Or equivalent. Award for $\arctan(\pm \frac{4}{5})$ or $\arctan(\pm \frac{5}{4})$ or equivalent seen without 180 or 90. cao	4
(iii)	12i – 15j or $\begin{pmatrix} 12\\ -15 \end{pmatrix}$	B1	Do not award for magnitude given as the answer. Penalise spurious notation by 1 mark at most once in paper	1
		6		

4	761	N	Nark Scheme June 2	mymathsch	A SHIS
Q 3		mark	comment	sub	·CO
(i)	$\mathbf{F} = 5 \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -5 \\ 10 \end{pmatrix} \text{ so } \begin{pmatrix} -5 \\ 10 \end{pmatrix} \text{ N}$	M1 A1	Penalise spurious notation by 1 mark at most once in paper Use of N2L in vector form Ignore units. [Award 2 for answer seen] [SC1 for $\sqrt{125}$ or equiv seen]	2	
(ii)	$\mathbf{s} = \begin{pmatrix} -2\\ 3 \end{pmatrix} + 4 \begin{pmatrix} 4\\ 5 \end{pmatrix} + \frac{1}{2} \times 4^2 \times \begin{pmatrix} -1\\ 2 \end{pmatrix}$ $\mathbf{s} = \begin{pmatrix} 6\\ 39 \end{pmatrix} \text{ so } \begin{pmatrix} 6\\ 39 \end{pmatrix} \text{ m}$	M1 A1 B1	Use of $\mathbf{s} = t\mathbf{u} + 0.5t^2\mathbf{a}$ or integration of \mathbf{a} . Allow \mathbf{s}_0 omitted. If integrated need to consider \mathbf{v} when $t = 0$ Correctly evaluated; accept \mathbf{s}_0 omitted. Correctly adding \mathbf{s}_0 to a vector (FT). Ignore units. $[NB\begin{pmatrix} 8\\ 36 \end{pmatrix}$ seen scores M1 A1]		
				3	
		5			

Q 4		mark	comment	sub
(i)	The distance travelled by P is $0.5 \times 0.5 \times t^2$ The distance travelled by Q is 10 <i>t</i>	B1 B1	Accept 10 <i>t</i> + 125 if used correctly below.	2
(ii)	Meet when $0.25t^2 = 125 + 10t$ so $t^2 - 40t - 500 = 0$ Solving t = 50 (or -10) Distance is $0.25 \times 50^2 = 625 \text{ m}$	M1 F1 M1 A1 A1	Allow their wrong expressions for P and Q distances Allow ± 125 or 125 omitted Award for their expressions as long as one is quadratic and one linear. Must have 125 with correct sign. Accept any method that yields (smaller) + ve root of their 3 term quadratic cao Allow –ve root not mentioned cao [SC2 400 m seen]	
				5
		7		

4	761	Ν	lark Scheme June	W. My Marks IIS 20. Sub
Q 5		mark	comment	sub
	either Overall, N2L → 135 - 9 = (5 + 4)a $a = 14 \text{ so } 14 \text{ m s}^{-2}$	M1 A1	Use of N2L. Allow <i>F</i> = <i>mga</i> but no extra forces. Allow 9 omitted.	
	For A, N2L \rightarrow $T-9 = 4 \times 14$ so 65 N or	M1 A1	N2L on A or B with correct mass. <i>F</i> = <i>ma</i> . All relevant forces and no extras. cao	
	135 - T = 5a T - 9 = 4a Solving T = 65 so 65 N	M1 A1 M1 A1	* 1 equation in <i>T</i> and <i>a</i> . Allow sign errors. Allow $F = mga$ Both equations correct and consistent Dependent on M* solving for <i>T</i> . cao.	
				4
		4		

Q 6		mark	comment	sub
(i)	$40 \times 0.6t - 5t^2$	M1	Use of $s = ut + 0.5at^2$ with $a = \pm 9.8, \pm 10$. Accept 40 or 40×0.8 for 'u'.	
	$= 24t - 5t^2$	A1	Any form	2
(ii)	either Need zero vertical distance so $24t - 5t^2 = 0$	M1	Equate their <i>y</i> to zero. With fresh start must have correct <i>y</i> . Accept no reference to $t = 0$ and the other root in any	
	so $t = 0$ or $t = 4.8$	A1	form. FT their y if gives $t > 0$	
	Time to highest point, T	M1	Allow use of $u = 40$ and 40×0.8 . Award even if half range found.	
	$0 = 40 \times 0.6 - 10T$ so $T = 2.4$ and time of flight is 4.8	A1	May be awarded for doubling half range later.	
	range is 40×0.8×4.8 = 153.6	M1	Horiz cpt. Accept 0.6 instead of 0.8 only if consistent with expression in (i). FT their t .	
	so 154 m (3 s. f.)	A1	cao [NB Use of half range or half time to get 76.8 (g = 10) or 78.36 (g = 9.8) scores 2] [If range formula used: M1 sensible attempt at substitution; allow sin2 α wrong B1 sin2 α correct A1 all correct A1 cao]	4
		6		

	761	N	Mark Scheme June 2	0. 171
7		mark	comment	sub
	Continuous string: smooth ring: light string	E1 E1	One reason Another reason	2
			[(ii) and (iii) may be argued using Lami or triangle of forces]	
)	Resolve \leftarrow : $60 \cos \alpha - 60 \cos \beta = 0$	M1	Resolution and an equation or equivalent. Accept $s \leftrightarrow c$. Accept a <i>correct</i> equation seen without method stated.	
	(so $\cos \alpha = \cos \beta$) and so $\alpha = \beta$	E1	Accept the use of ' T instead of '60'. Shown. Must have stated method (allow \rightarrow seen).	2
)	Resolve ↑	M1	Resolution and an equation. Accept $s \leftrightarrow c$. Do not award for resolution that cannot give solution (e.g. horizontal)	
	$2 \times 60 \times \sin \alpha - 8g = 0$	B1	Both strings used (accept use of half weight), seen in an equation	
	so <i>α</i> = 40.7933 so 40.8° (3 s. f.)	B1 A1 A1	$\sin \alpha$ or equivalent seen in an equation All correct	
				5
	Resolve \rightarrow 10 + $T_{\rm QC}$ cos 25 - $T_{\rm PC}$ cos 45 = 0	M1 M1	Recognise strings have different tensions. Resolution and an equation. Accept $s \leftrightarrow c$. No extra forces.	
	Resolve	A1	All forces present. Allow sign errors. Correct. Any form. Resolution and an equation. Accept $s \leftrightarrow c$. No extra	
	$\uparrow T_{\rm PC}\sin 45 + T_{\rm QC}\sin 25 - 8g = 0$	M1 A1	forces. All forces present. Allow sign errors. Correct. Any form.	
	Solving	M1	* A method that leads to at least one solution of a pair of simultaneous equations.	
	$T_{\rm co} = 51.4701$ so 51.5 N (3 s. f.)	A1	cao either tension	
	$T_{\rm CP} = 80.1120$ so 80.1 N (3 s. f.)	F1	other tension. Allow FT only if M1* awarded [Scale drawing: 1 st M1 then A1, A1 for answers correct	
			to 2 s.f.]	8
_		17		-

4761			Mark Scheme June 20 Mark Scheme June 20 Mark Scheme 1					
Q 8		mark	comment	sub				
(i)	10	B1		1				
(ii)	$v = 36 + 6t - 6t^2$	M1 A1	Attempt at differentiation	2				
(iii)	a = 6 - 12t	M1 F1	Attempt at differentiation	2				
(iv)	Take $a = 0$ so $t = 0.5$ and $v = 37.5$ so 37.5 m s ⁻¹	M1 A1 A1	Allow table if maximum indicated or implied FT their <i>a</i> cao Accept no justification given that this is maximum					
(v)	either Solving $36+6t-6t^2 = 0$ so $t = -2$ or $t = 3$ or Sub the values in the expression for v Both shown to be zero	M1 B1 E1 M1 E1	A method for two roots using their <i>v</i> Factorization or formula or of their expression Shown Allow just 1 substitution shown Both shown	3				
	A quadratic so the only roots then x(-2) = -34 x(3) = 91	B1 B1 B1 B1	Must be a clear argument cao cao	5				
(vi)	x(3) - x(0) + x(4) - x(3) = 91-10 + 74-91 = 98 so 98 m	M1 A1 A1	Considering two parts Either correct cao [SC 1 for $s(4) - s(0) = 64$]	3				
(vii)	At the SP of v x(-2) = -34 i.e. < 0 and x(3) = 91 i.e. > 0 Also $x(-4) = 42 > 0$ and x(6) = -98 < 0	M1	Or any other valid argument e.g find all the zeros, sketch, consider sign changes. Must have some working. If only a sketch, must have correct shape.					
		B1	Doing appropriate calculations e.g. find all 3 zeros; sketch cubic reasonably (showing 3 roots); sign changes in range					
	so three times	B1	3 times seen	3				
	<u> </u>	19						

MWWW. My Marks Marks

Q 1		mark	comment	sub
(a) (i)	In i direction: $6u - 12 = 18$ so $u = 5$ i.e. 5i m s ⁻¹	M1 E1	Use of I-M Accept $6u - 12 = 18$ as total working. Accept 5 instead of 5i.	
	either In i direction: $0.5v + 12 = 0.5 \times 11$ v = -13 so -13 i m s ⁻¹	M1 B1 A1	Use of I-M Use of + 12i or equivalent Accept direction indicated by any means	
	or $6 \times 5 + 0.5 v = 6 \times 3 + 0.5 \times 11$ v = -13 so $-13i$ m s ⁻¹	M1 A1 A1	PCLM Allow only sign errors Accept direction indicated by any means	5
(ii)	Using NEL: $\frac{11-3}{-13-5} = -e$	M1	Use of NEL. Condone sign errors but not reciprocal expression	
	$e = \frac{4}{9} (0.\dot{4})$	F1 F1	FT only their -13 (even if +ve) FT only their -13 and only if -ve (allow 1 s.f. accuracy)	3
(iii)	In i direction: $-2 \times 7 = 0.5v - 0.5 \times 11$ v = -17 so -17 i m s ⁻¹	M1 M1 A1 A1	Use of $I = Ft$ Use of $I = m(v - u)$ For ± 17 cao. Direction (indicated by any means)	
	or -2i = 0.5 a so $a = -4i \text{ m s}^{-2}$ $v = 11i - 4i \times 7$ $v = -17 \text{ so } -17 \text{ i m s}^{-1}$	M1 A1 M1 A1	Use of $\mathbf{F} = m\mathbf{a}$ For ± 4 Use of uvas <i>t</i> cao. Direction (indicated by any means)	4
(b)	ui+evj	B1 B1	For <i>u</i> For <i>ev</i>	
	$\tan \alpha = \frac{v}{u}, \ \tan \beta = \frac{ev}{u}$	M1	Use of tan. Accept reciprocal argument. Accept use of their components	
	$\tan \beta = e\left(\frac{v}{u}\right) = e \tan \alpha$	B1 E1	Both correct. Ignore signs. Shown. Accept signs not clearly dealt with.	
	(u)			5
		17		

			cheme June 20	3313	
4762	Ма	rk Sci	theme June 20.	athsch	
Q 2		mark	comment	sub	Yd.con
(i)	$(2+3\times6)\left(\frac{\overline{x}}{\overline{y}}\right) = 6\left(\frac{3}{0}\right) + 6\left(\frac{6}{3}\right) + 6\left(\frac{3}{6}\right) + 2\left(\frac{0}{7}\right)$	M1	Method for c.m.		
		B1	Total mass correct		
	$20\left(\frac{\overline{x}}{\overline{y}}\right) = \left(\frac{18+36+18}{18+36+14}\right) = \left(\frac{72}{68}\right)$	B1	For any of the 1 st 3 RHS terms		
	$\overline{x} = 3.6$	B1 E1	For the 4 th RHS term		
	$\frac{x - 3.6}{\overline{y}} = 3.4$	A1	cao [If separate cpts, award the 2^{nd} B1 for 2 <i>x</i> - terms correct and 3^{rd} B1 for 2×7 in <i>y</i> term]		
		 '		6	l
	2 2.6 3.4 0 Vertical				
(ii)		B1 B1	Diagram showing G vertically below D 3.6 and their 3.4 correctly placed (may be implied)		
	$\arctan\left(\frac{3.6}{2+(6-3.4)}\right) = \arctan\left(\frac{3.6}{4.6}\right)$	M1	Use of arctan on their lengths. Allow reciprocal of argument.		
	so 38.047… so 38.0° (3 s. f.)	B1 A1	Some attempt to calculate correct lengths needed 2 + (6 – their 3.4) seen cao		
		<u> </u>		5	1
(iii)	moments about D $5 \times 3.6 = 6 \times T_{\rm BP}$ so tension in BP is 3 N	M1 F1	moments about D. No extra forces FT their values if calc 2nd		
	Resolve vert: $3 + T_{DQ} = 5$ so tension in DQ is 2 N	M1 F1	Resolve vertically or moments about B. FT their values if calc 2nd		
				4	
(iv)	We require <i>x</i> -cpt of c.m. to be zero either	M1	A method to achieve this with all cpts		
	$(20+L)\overline{x} = 20 \times 3.6 - \frac{1}{2}L^2$ or				
	$2 \times 6 \times (0.5 \times 6) + 6 \times 6 - 0.5 \times L^2 = 0$				
	L = 12	B1 A1	For the $0.5 \times L^2$ All correct		
		A1		4	
		19	<u> </u>		l

4701			comment	141	
4762	. ivia	ark Scl	theme June 20	athscr	is Our
Q 3		mark	comment	sub	Y.COD
(a) (i)	$\begin{array}{c} T_{AD} \\ T_{BD} \\ T_{BD$	B1 B1	Internal forces all present and labelled All forces correct with labels and arrows (Allow the internal forces set as tensions, thrusts or a mixture)	2	
(ii)		M1 A1	Equilibrium equation at a pin-joint attempted 1 st ans. Accept + or –.		
	A ↑	M1	Second equation attempted		
	$T_{AD} \sin 30 - L = 0 \text{so } T_{AD} = 2L \text{ so } 2L \text{ N}$ (T) $A \rightarrow T_{AB} + T_{AD} \cos 30 = 0$	F1	2 nd ans. FT any previous answer(s) used.		
	$A \rightarrow T_{AB} + T_{AD} \cos 30 = 0$ so $T_{AB} = -\sqrt{3}L$ so $\sqrt{3}L$ N (C)	M1	Third equation attempted		
	$B \uparrow T_{BD} \sin 60 - 3L = 0$	A1	3 rd ans. FT any previous answer(s) used.		
	so $T_{BD} = 2\sqrt{3}L$ so $2\sqrt{3}L$ N (T) B \rightarrow $T_{BC} + T_{BD} \cos 60 - T_{AB} = 0$ so $T_{BC} = -2\sqrt{3}L$ so $2\sqrt{3}L$ N (C)	M1 F1 E1	Fourth equation attempted 4 th ans. FT any previous answer(s) used. All T/C consistent [SC 1 all T/C correct WWW]	9	
(b)	Leg QR with frictional force <i>F</i> ← moments c.w. about R		Accept only 1 leg considered (and without comment)		
	$U \times 2l \sin 60 - Wl \cos 60 = 0$	M1	Suitable moments equation. Allow 1 force		
	$0 \times 2i \sin 00 - m \cos 00 - 0$	A1	omitted a.c. moments		
		A1	c.w. moments		
	Horiz equilibrium for QR <i>F</i> = <i>U</i>	M1	A second correct equation for horizontal or vertical equilibrium to eliminate a force (U or reaction at foot) [Award if correct moments equation containing only <i>W</i> and <i>F</i>]		
	1	E1	* This second equation explicitly derived		
	Hence $\frac{1}{2}W = \sqrt{3}F$ and so $F = \frac{\sqrt{3}}{6}W$	M1	Correct use of 2 nd equation with the moments equation		
	and so $F = \frac{\sqrt{3}}{6}W$	E1	Shown. CWO but do not penalise * again.	7	
	· · · · · · · · · · · · · · · · · · ·	18	+	+	-

4762	2 Ma	ark Scl	cheme June 20	AN ANSIINS CIOUD
Q 4		mark	comment	sub
(a) (i)	Tension is perp to the motion of the sphere (so WD, $Fd\cos\theta = 0$)	E1		1
(ii)	Distance dropped is $2-2\cos 40 = 0.467911.$	M1	Attempt at distance with resolution used. Accept	
ļ	1	E1	$sin \leftrightarrow cos$ Accept seeing 2-2cos40	
	GPE is <i>mgh</i> so 0.15×9.8×0.467911 = 0.687829 J	M1 B1	Any reasonable accuracy	4
(iii)	$0.5 \times 0.15 \times v^2 = 0.687829$	M1	Using KE + GPE constant	
	so $v = 3.02837$ so 3.03 m s^{-1} (3 s. f.)	F1	FT their GPE	2
(iv)	$\frac{1}{2} \times 0.15 (v^2 - 2.5^2)$	M1	Use of W-E equation (allow 1 KE term or GPE term omitted)	
ļ	l	B1	KE terms correct	
ļ	$= 0.687829 0.6 \times \frac{40}{360} \times 2\pi \times 2$	M1	WD against friction	
ļ	v = 2.06178 so 2.06 m s ⁻¹ (3 s. f.)	A1 A1	WD against friction correct (allow sign error)	
	V = 2.00170 SU 2.001115 (3 S. I.)	A	сао	5
(b)	N2L down slope: $3g\sin 30 - F = 3 \times \frac{1}{8}g$	M1	Must have attempt at weight component	
ļ	9.4	A1	Allow sign errors.	
ļ	so $F = \frac{9g}{8}$ (= 11.025)	A1		
ļ	$R = 3g \times \frac{\sqrt{3}}{2}$ (= 25.4611)	B1		
ļ	$\mu = \frac{F}{R} = \frac{\sqrt{3}}{4} \ (= 0.43301)$	M1	Use of $F = \mu R$	
	R 4	E1	Must be worked precisely	6
	·	18	+	

MWWW. Mymainscioud.com

1(a)(i)	[Velocity] = LT^{-1}	B1	(Deduct 1 mark if kg, m, s are
	[Acceleration] = $L T^{-2}$	B1	consistently used instead of <i>M</i> , <i>L</i> , <i>T</i>)
	$[Force] = M L T^{-2}$	B1	
		3	
(ii)	$[\lambda] = \frac{[Force]}{[v^2]} = \frac{M L T^{-2}}{(L T^{-1})^2}$	M1	
	$= M L^{-1}$	A1 cao 2	
(iii)	$\left[\frac{U^2}{2g}\right] = \frac{(\mathrm{L}\mathrm{T}^{-1})^2}{\mathrm{L}\mathrm{T}^{-2}} = \mathrm{L}$	B1 cao	(Condone constants left in)
	$\left[\frac{\lambda U^4}{4mg^2}\right] = \frac{(M L^{-1})(L T^{-1})^4}{M (L T^{-2})^2}$	M1	
	$= \frac{M L^{3} T^{-4}}{M L^{2} T^{-4}} = L$	A1 cao	
	[<i>H</i>] = L ; all 3 terms have the same dimensions	E1 4	Dependent on B1M1A1
(iv)	$(M L^{-1})^2 (L T^{-1})^{\alpha} M^{\beta} (L T^{-2})^{\gamma} = L$		
	$\beta = -2$	B1 cao	
	$-2 + \alpha + \gamma = 1$ $-\alpha - 2\gamma = 0$	M1 A1	At least one equation in α , γ One equation correct
	$\begin{array}{l} \alpha = 6 \\ \gamma = -3 \end{array}$	A1 cao A1 cao	
		5	

Mark Scheme

4700	March 0		Www.mymainscioud.con
4763	Mark S	Scheme	June 20 ART
(b)	EE is $\frac{1}{2} \times \frac{2060}{24} \times 6^2$ (=1545) (PE gained) = (EE lost) + (KE lost)	B1	Oud.con
		M1	Equation involving PE, EE and KE Can be awarded from start to point where string becomes slack <i>or</i> any complete method (e.g. SHM) for finding v^2 at natural length If B0, give A1 for $v^2 = 88.2$ correctly obtained
	$50 \times 9.8 \times h = 1545 + \frac{1}{2} \times 50 \times 12^{2}$ $490h = 1545 + 3600$ $h = 10.5$	F1	or $0 = 88.2 - 2 \times 9.8 \times s$ (s = 4.5) Notes
	OA = 30 - h = 19.5 m	A1	4 $\frac{1}{2} \times \frac{2060}{24} \times 6$ used as EE can earn BOM1F1A0 $\frac{2060}{24} \times 6$ used as EE gets BOM0

(i) $ \begin{array}{c c c c c c c c c } \hline T\cos\alpha &= mg \\ 3.92\cos\alpha &= 0.3 \times 9.8 \\ \cos\alpha &= 0.75 \\ \text{Angle is } 41.4^{\circ} & (0.723 \text{ rad}) \end{array} & \text{M1} \\ \text{A1} & \textbf{2} \end{array} & \begin{array}{c c c c c c c c c c c c c c c c c c c $	4763	Mark Schei	me	June 20.
Angle is 41.4° (0.723 rad) Angle is 41.4° (0.723 rad) A_{1} A_{1} A_{1				
Angle is 41.4° (0.723 rad) Angle is 41.4° (0.723 rad) A_{1} A_{1} A_{1	2 (i)	_		
Angle is 41.4° (0.723 rad) Angle is 41.4° (0.723 rad) A_{1} A_{1} A_{1			M1	Resolving vertically
(ii) $T \sin \alpha = m \frac{v^{2}}{r}$ $3.92 \sin \alpha = 0.3 \times \frac{v^{2}}{4.2 \sin \alpha}$ Speed is 4.9 m s ⁻¹ (iii) $T - mg \cos \theta = m \frac{v^{2}}{a}$ (iii) $T - mg \cos \theta = m \frac{v^{2}}{a}$ (iii) $T - mg \cos \theta = m \frac{v^{2}}{a}$ $T - 0.3 \times 9.8 \times \cos 60^{\circ} = 0.3 \times \frac{8.4^{2}}{4.2}$ Tension is 6.51 N (iv) $\frac{1}{2}mv^{2} - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^{2} - mg \times 4.2 \cos 60^{\circ}$ $v^{2} - 82.32 \cos \theta = 70.56 - 41.16$ $v^{2} = 29.4 + 82.32 \cos \theta$ (iv) $T - mg \cos \theta = m \frac{v^{2}}{a}$ (iv) $T - mg \cos \theta = m \frac{v^{2}}{a}$ (iv) $\frac{1}{2}mv^{2} - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^{2} - mg \times 4.2 \cos 60^{\circ}$ $T - 0.3 \times 9.8 \times \cos \theta = m \times \frac{9.4 + 82.32 \cos \theta}{4.2}$ (iv) $T - mg \cos \theta = m \frac{v^{2}}{a}$ (iv)				
(ii) $T \sin \alpha = m \frac{v^2}{r}$ $3.92 \sin \alpha = 0.3 \times \frac{v^2}{4.2 \sin \alpha}$ Speed is 4.9 ms^{-1} (iii) $T - mg \cos \theta = m \frac{v^2}{a}$ $T - mg \cos \theta = m \frac{v^2}{a}$ $T - 0.3 \times 9.8 \times \cos 60^\circ = 0.3 \times \frac{8.4^2}{4.2}$ Tension is 6.51 N (iv) $\frac{1}{2}mv^2 - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^2 - mg \times 4.2 \cos 60^\circ$ $v^2 - 82.32 \cos \theta = 70.56 - 41.16$ $v^2 = 29.4 + 82.32 \cos \theta$ (i) $T - mg \cos \theta = m \frac{v^2}{a}$ (ii) $T - mg \cos \theta = m \frac{v^2}{a}$ (iv) $\frac{1}{2}mv^2 - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^2 - mg \times 4.2 \cos 60^\circ$ $r^2 - 82.32 \cos \theta = 70.56 - 41.16$ $v^2 = 29.4 + 82.32 \cos \theta$ (i) $T - mg \cos \theta = m \frac{v^2}{a}$ (i) $T - mg \cos \theta = m \frac{v^2}{a}$ (i) $T - mg \cos \theta = m \frac{v^2}{a}$ (ii) $\frac{1}{2}mv^2 - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^2 - mg \times 4.2 \cos 60^\circ$ $r^2 - 82.32 \cos \theta = 70.56 - 41.16$ $r^2 = 29.4 + 82.32 \cos \theta$ (i) $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = mx - \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.8 \cos \theta = mx - \frac{29.4 + 82.32 \cos \theta}{4.2}$ $T - mx - 9.$				
$T \sin \alpha = m \frac{1}{r}$ $3.92 \sin \alpha = 0.3 \times \frac{v^2}{4.2 \sin \alpha}$ Speed is 4.9 ms^{-1} (iii) $T - mg \cos \theta = m \frac{v^2}{a}$ $T - 0.3 \times 9.8 \times \cos 60^\circ = 0.3 \times \frac{8.4^2}{4.2}$ Tension is 6.51 N (iv) $\frac{1}{2}mv^2 - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^2 - mg \times 4.2 \cos 60^\circ$ $v^2 - 82.32 \cos \theta = 70.56 - 41.16$ $v^2 = 29.4 + 82.32 \cos \theta$ (i) $T - mg \cos \theta = m \frac{v^2}{a}$ (v) $T - mg \cos \theta = mg \frac{v^2}{a}$ (v) $T - mg \cos \theta = mg \frac{v^2}{a}$ (v) $T - mg \cos \theta = mg \frac{v^2}{a}$ (v) $T - mg \cos \theta = mg \frac{v^2}{a}$ (v) $T - mg \cos \theta = mg \frac{v^2}{a}$ (v) $T - mg \cos \theta = mg \frac{v^2}{a}$ (v) $T - mg \cos \theta = mg \frac{v^2}{a}$ (v) $T - mg \cos \theta = mg \frac{v^2}{a}$ (v) $T - mg \cos \theta $	(::)			
$\begin{array}{c c} 3.92 \sin \alpha = 0.3 \times \frac{v^2}{4.2 \sin \alpha} \\ \text{Speed is } 4.9 \mathrm{ms^{-1}} \end{array} \qquad \begin{array}{c c} \text{B1} \\ \text{A1} \\ \text{A2} \\ \text{A1} \\ \text{A2} \\ \text{A2} \\ \text{A3} \\ \text{A1} \\ \text{A1} \\ \text{A2} \\ \text{A1} \\ \text{A1} \\ \text{A2} \\ \text{A2} \\ \text{A2} \\ \text{A3} \\ \text{A2} \\ \text{A3} \\ \text{A1} \\ \text{A1} \\ \text{A2} \\ \text{A1} \\ \text{A1} \\ \text{A2} \\ \text{A1} \\ \text{A1} \\ \text{A2} \\ \text{A1} \\ \text{A2} \\ \text{A1} \\ \text{A1} \\ \text{A2} \\ \text{A2} \\ \text{A3} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \text{A2} \\ \text{A1} \\ \text{A1} \\ \text{A2} \\ \text{A2} \\ \text{A3} \\ \text{A3} \\ \text{A4} \\ \text{A4} \\ \text{A4} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \text{A2} \\ \text{A2} \\ \text{A3} \\ \text{A3} \\ \text$	(11)	$T\sin\alpha = m\frac{v^2}{2}$	IVIT	
Speed is 4.9 ms^{-1} A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		r ²	B1	
Speed is 4.9 ms^{-1} A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		$3.92\sin\alpha = 0.3 \times \frac{v}{4.2\sin\alpha}$		For radius is $4.2\sin\alpha$ (= 2.778)
(iii) $T - mg \cos \theta = m \frac{v^2}{a}$ $T - 0.3 \times 9.8 \times \cos 60^\circ = 0.3 \times \frac{8.4^2}{4.2}$ Tension is 6.51 N (iv) $\frac{1}{2}mv^2 - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^2 - mg \times 4.2 \cos 60^\circ$ $v^2 - 82.32 \cos \theta = 70.56 - 41.16$ $v^2 = 29.4 + 82.32 \cos \theta$ (v) $(T) - mg \cos \theta = m \frac{v^2}{a}$ $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ String becomes slack when $T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 10^{46}$ (4) (1) (1) (1) (1) (1) (1) (1) (1			A 4	-
(iii) $T - mg \cos \theta = m \frac{v^{2}}{a}$ $T - 0.3 \times 9.8 \times \cos 60^{\circ} = 0.3 \times \frac{8.4^{2}}{4.2}$ Tension is 6.51 N (iv) $\frac{1}{2}mv^{2} - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^{2} - mg \times 4.2 \cos 60^{\circ}$ $\frac{M1}{A1}$ $\frac{M1}{A1}$ $\frac{For (-)mg \times 4.2 \cos \theta \text{ in PE}}{equation involving \frac{1}{2}mv^{2}} \text{ and PE}$ Equation involving $\frac{1}{2}mv^{2}$ and PE (v) $(T) - mg \cos \theta = m \frac{v^{2}}{a}$ $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $\frac{M1}{A1}$ $\frac{M1}{B1}$ $\frac{Force and acceleration towards O}{Substituting for v^{2}}$ $\frac{M1}{A1}$ $\frac{M1}{B1}$ $\frac{Force and acceleration towards O}{Substituting for v^{2}}$ $\frac{M1}{B1}$ $\frac{M1}{B1}$ $\frac{M1}{B1}$ $\frac{Force and acceleration towards O}{Substituting for v^{2}}$ $\frac{M1}{B1}$ $\frac{M1}$				
$\begin{array}{c c} \mathbf{Y} & T - mg\cos\theta = m\frac{1}{a} \\ T - 0.3 \times 9.8 \times \cos 60^{\circ} = 0.3 \times \frac{8.4^2}{4.2} \\ Tension is \ 6.51 \ N \end{array}$ $\begin{array}{c c} \mathbf{M}1 \\ \frac{1}{2}mv^2 - mg \times 4.2\cos\theta = \frac{1}{2}m \times 8.4^2 - mg \times 4.2\cos 60^{\circ} \\ v^2 - 82.32\cos\theta = 70.56 - 41.16 \\ v^2 = 29.4 + 82.32\cos\theta \end{array}$ $\begin{array}{c c} \mathbf{M}1 \\ \mathbf{M}1$	(:::)			appears
$\begin{array}{c c} T - 0.3 \times 9.8 \times \cos 60^{\circ} = 0.3 \times \frac{8.4^{2}}{4.2} \\ \hline \text{Tension is } 6.51 \text{ N} \end{array} \qquad \begin{array}{c} \text{A1} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \end{array} \qquad \begin{array}{c} \text{A1} \\ \text{A1} \\ \text{A1} \\ \end{array} \qquad \begin{array}{c} \text{Box and SO} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \end{array} \qquad \begin{array}{c} \text{Box and SO} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \end{array} \qquad \begin{array}{c} \text{Box and SO} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \end{array} \qquad \begin{array}{c} \text{Box and SO} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \end{array} \qquad \begin{array}{c} \text{For } (-)mg \times 4.2 \cos \theta \text{ in PE} \\ \text{Equation involving } \frac{1}{2}mv^{2} \text{ and PE} \\ \text{Equation involving } \frac{1}{2}mv^{2} \text{ and PE} \\ \text{A1} \\ \text{E1} \\ \end{array} \qquad \begin{array}{c} \text{A1} \\ \text{A1} \\ \text{A1} \\ \end{array} \qquad \begin{array}{c} \text{For ce and acceleration} \\ \text{fow and SO} \\ \text{for } v^{2} = 29.4 + 82.32 \cos \theta \\ \text{A1} \\ \text{A1} \\ \text{A1} \\ \end{array} \qquad \begin{array}{c} \text{For ce and acceleration} \\ \text{fow and SO} \\ \text{Substituting for } v^{2} \\ \text{String becomes slack when } T = 0 \\ -9.8 \cos \theta = 7 + 19.6 \cos \theta \\ \cos \theta = -\frac{7}{29.4} \\ \theta = 104^{\circ} (181 \text{ rad}) \\ \end{array} \qquad \begin{array}{c} \text{A1} \\ \text{A1} \\ \end{array} \qquad \begin{array}{c} \text{No marks for } v = 0 \Rightarrow \theta = 111^{\circ} \end{array}$	(111)	$T - mg\cos\theta = m\frac{v^2}{2}$	M1	Forces and acceleration
Tension is 6.51 N A1 3 (iv) $\frac{1}{2}mv^2 - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^2 - mg \times 4.2 \cos 60^\circ$ $v^2 - 82.32 \cos \theta = 70.56 - 41.16$ $v^2 = 29.4 + 82.32 \cos \theta$ (v) (T) - mg \cos \theta = m \frac{v^2}{a} (V) (T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2} (V) (T) - m × 9.8 cos $\theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ String becomes slack when $T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^\circ$ (1.81 rad) (I) (I) (I) (I) (I) (I) (I) (I		a 8 4 ²		
(iv) $\frac{1}{2}mv^{2} - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^{2} - mg \times 4.2 \cos 60^{\circ}$ $\frac{1}{2}mv^{2} - 82.32 \cos \theta = 70.56 - 41.16$ $v^{2} = 29.4 + 82.32 \cos \theta$ (v) $(T) - mg \cos \theta = m\frac{v^{2}}{a}$ $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ (v) $(T) - mg \cos \theta = mg \times 29$		$T - 0.3 \times 9.8 \times \cos 60^\circ = 0.3 \times \frac{6.7}{4.2}$	A1	
(iv) $\frac{1}{2}mv^{2} - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^{2} - mg \times 4.2 \cos 60^{\circ}$ $\frac{M1}{A1}$ $\frac{1}{2}mv^{2} - 82.32 \cos \theta = 70.56 - 41.16$ $v^{2} = 29.4 + 82.32 \cos \theta$ (v) $(T) - mg \cos \theta = m\frac{v^{2}}{a}$ $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ String becomes slack when $T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ}$ (1.81 rad) (iv) M1 $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$		Tension is 6.51 N	A1	
$\frac{1}{2}mv^{2} - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^{2} - mg \times 4.2 \cos 60^{\circ}$ $v^{2} - 82.32 \cos \theta = 70.56 - 41.16$ $v^{2} = 29.4 + 82.32 \cos \theta$ (V) $(T) - mg \cos \theta = m\frac{v^{2}}{a}$ $(T) - m \times 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $String becomes slack when T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ}$ (1 81 rad) (U) $($			3	
$\frac{1}{2}mv^{2} - mg \times 4.2 \cos \theta = \frac{1}{2}m \times 8.4^{2} - mg \times 4.2 \cos 60^{\circ}$ $v^{2} - 82.32 \cos \theta = 70.56 - 41.16$ $v^{2} = 29.4 + 82.32 \cos \theta$ $(T) - mg \cos \theta = m\frac{v^{2}}{a}$ $(T) - mg \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $(T) - m \times 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $String becomes slack when T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ} (1.81 \text{ rad})$ $A1$ $A1$ $A1$ $A1$ $No marks for v = 0 \implies \theta = 111^{\circ}$	(iv)		M1	For $(-)mg \times 4.2 \cos \theta$ in PE
$v^{2} - 82.32 \cos \theta = 70.56 - 41.16$ $v^{2} = 29.4 + 82.32 \cos \theta$ (V) $(T) - mg \cos \theta = m \frac{v^{2}}{a}$ $(T) - m \times 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ $String becomes slack when T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ} (1.81 \text{ rad})$ $A1$ $A1$ $No marks for v = 0 \Rightarrow \theta = 111^{\circ}$		$\frac{1}{1}$ may $\frac{1}{2}$ may $\frac{1}{2}$ cos $\theta = \frac{1}{2}$ my $\frac{8}{4}$ $\frac{1}{2}$ may $\frac{1}{2}$ cos $\theta = 0^{\circ}$		Equation involving $\frac{1}{2}mv^2$ and PE
$v^{2} = 29.4 + 82.32 \cos \theta$ E1 4 (v) $(T) - mg \cos \theta = m \frac{v^{2}}{a}$ $(T) - m \times 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ String becomes slack when $T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ} (1.81 \text{ rad})$ E1 4 No marks for $v = 0 \Rightarrow \theta = 111^{\circ}$			A1	
(v) $ \begin{array}{c c} & v^{-} = 29.4 + 82.32 \cos \theta \\ & 4 \\ \end{array} $ (v) $ \begin{array}{c c} & (T) - mg \cos \theta = m \frac{v^{2}}{a} \\ & (T) - m \times 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2} \\ & \text{String becomes slack when } T = 0 \\ & -9.8 \cos \theta = 7 + 19.6 \cos \theta \\ & \cos \theta = -\frac{7}{29.4} \\ & \theta = 104^{\circ} (1.81 \text{ rad}) \\ \end{array} $ M1 M1 M1 M1 M1 M1 M1 M1 M1 M1			E1	
$(T) - mg \cos \theta = m - \frac{1}{a}$ $(T) - m \times 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ String becomes slack when $T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ} (1.81 \text{ rad})$ A1 A1 A1 Force and acceleration towards O Substituting for v^2 Dependent on first M1 A1 No marks for $v = 0 \Rightarrow \theta = 111^{\circ}$		$V = 29.4 + 82.52 \cos \theta$	4	
$(T) - m \times 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ String becomes slack when $T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ} (1.81 \text{ rad})$ A1 $M1$ A1 $M1$ A1 $Dependent \text{ on first } M1$ $A1$ $No \text{ marks for } v = 0 \implies \theta = 111^{\circ}$	(v)	(T) magon $\theta = m^{v^2}$		
$(T) - m \times 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$ String becomes slack when $T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ} (1.81 \text{ rad})$ A1 A1 A1 A1 A1 A1 No marks for $v = 0 \Rightarrow \theta = 111^{\circ}$				
String becomes slack when $T = 0$ $-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ}$ (1.81 rad) A1 M1 A1 No marks for $v = 0 \Rightarrow \theta = 111^{\circ}$		$(T) - m \times 9.8 \cos \theta = m \times \frac{29.4 + 82.32 \cos \theta}{4.2}$		
$-9.8 \cos \theta = 7 + 19.6 \cos \theta$ $\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ} (1.81 \text{ rad})$ A1 Dependent on first M1 No marks for $v = 0 \Rightarrow \theta = 111^{\circ}$		-		
$\cos \theta = -\frac{7}{29.4}$ $\theta = 104^{\circ} (1.81 \text{ rad})$ A1 No marks for $v = 0 \implies \theta = 111^{\circ}$		0		Dependent on first M1
$\theta = 104^{\circ}$ (1.81 rad) A1 No marks for $v = 0 \Rightarrow \theta = 111^{\circ}$		$\cos\theta = -\frac{7}{1}$		
			A1	No marks for $v = 0 \implies \theta = 111^\circ$
		$\theta = 104^{-1}$ (1.81 fau)		

4763	Mark Schei	me		Finding extension of BQ	ALLANS CI
3 (i)	$T_{PB} = 35(x-3.2) [= 35x-112]$ $T_{BQ} = 5(6.5-x-1.8)$ = 5(4.7-x) [= 23.5-5x]	B1 M1 A1	3	Finding extension of BQ	1040
(ii)	$T_{BQ} + mg - T_{PB} = m \frac{d^2 x}{dt^2}$ $5(4.7 - x) + 2.5 \times 9.8 - 35(x - 3.2) = 2.5 \frac{d^2 x}{dt^2}$ $160 - 40x = 2.5 \frac{d^2 x}{dt^2}$ $\frac{d^2 x}{dt^2} = 64 - 16x$	M1 A2 E1	4	Equation of motion (condone one missing force) Give A1 for three terms correct	
(iii)	At the centre, $\frac{d^2x}{dt^2} = 0$ x = 4	M1 A1	2		
	$\omega^2 = 16$ Period is $\frac{2\pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57$ s	M1 A1	2	Seen or implied (Allow M1 for $\omega = 16$) Accept $\frac{1}{2}\pi$	
	Amplitude $A = 4.4 - 4 = 0.4$ m Maximum speed is $A\omega$ $= 0.4 \times 4 = 1.6$ m s ⁻¹	B1 ft M1 A1 cao	3	ft is 4.4-(iii)	
(vi)	$x = 4 + 0.4 \cos 4t$ $v = (-) 1.6 \sin 4t$ When $v = 0.9$, $\sin 4t = -\frac{0.9}{1.6}$ $4t = \pi + 0.5974$ Time is 0.935 s	M1 A1 M1 A1 cao	4	For $v = C \sin \omega t$ or $C \cos \omega t$ <i>This M1A1 can be earned in (v)</i> Fully correct method for finding the required time e.g. $\frac{1}{4} \arcsin \frac{0.9}{1.6} + \frac{1}{2}$ period	
	OR $0.9^2 = 16(0.4^2 - y^2)$ y = -0.3307 M1 $y = 0.4 \cos 4t$ A1 $\cos 4t = -\frac{0.3307}{0.4}$ $4t = \pi + 0.5974$ M1 Time is 0.935 s A1 cao		4	Using $v^2 = \omega^2 (A^2 - y^2)$ and $y = A \cos \omega t$ or $A \sin \omega t$ For $y = (\pm) 0.331$ and $y = 0.4 \cos 4t$	

			www.p	12
4763	Mark Scher	ne	June 20	Maths Alling
4 (a)(i)	$V = \int \pi x^2 dy = \int_0^8 \pi \left(4 - \frac{1}{2}y\right) dy$	M1	π may be omitted throughout Limits not required for M marks throughout this question	TOUD COM
	$=\pi \left[4y - \frac{1}{4}y^2 \right]_0^8 = 16\pi$	A1		
	$V \overline{y} = \int \pi y x^2 \mathrm{d}y$	M1		
	$= \int_{0}^{8} \pi y \left(4 - \frac{1}{2} y\right) dy$	A1		
	$= \pi \left[2y^2 - \frac{1}{6}y^3 \right]_0^8 = \frac{128}{3}\pi$ $\overline{y} = \frac{\frac{128}{3}\pi}{16\pi}$	A1		
	$16\pi = \frac{8}{3} (\approx 2.67)$	M1	Dependent on M1M1	
	3	A1 7		
(ii)	CM is vertically above lower corner	M1 M1	Trig in a triangle including θ Dependent on previous M1	
	$ \tan \theta = \frac{2}{\overline{y}} = \frac{2}{\frac{8}{3}} (=\frac{3}{4}) $	A1	Correct expression for $\tan \theta$ or $\tan(90 - \theta)$	
	$\theta = 36.9^{\circ}$ (= 0.6435 rad)	A1 4	Notes	
			$\tan \theta = \frac{2}{\operatorname{cand's} \overline{y}} \text{implies M1M1A1}$	
			$\tan \theta = \frac{\text{cand's } \overline{y}}{2} \text{ implies M1M1}$	
			$ \tan \theta = \frac{1}{\operatorname{cand's} \overline{y}} $ without further	
			evidence is M0M0	

			May use $0 \le x \le 2$ throughout or $(2) \int_{0}^{8} \sqrt{4 - \frac{1}{2}y} dy$
4763		Mark Scheme	June 20 June 2
(b)	(²		May use $0 \le x \le 2$ throughout
	$A = \int_{-2}^{2} (8 - 2x^2) \mathrm{d}x$	M1	or $(2) \int_{0}^{8} \sqrt{4 - \frac{1}{2}y} dy$
	$= \left[8x - \frac{2}{3}x^3 \right]_{-2}^2 = \frac{64}{3}$	A1	
	$A\overline{y} = \int_{-2}^{2} \frac{1}{2} (8 - 2x^2)^2 dx$	M1	or (2) $\int_{0}^{8} y \sqrt{4 - \frac{1}{2}y} dy$
	$= \left[32x - \frac{16}{3}x^3 + \frac{2}{5}x^5 \right]_{-2}^{2}$	M1	(M0 if $\frac{1}{2}$ is omitted) For $32x - \frac{16}{3}x^3 + \frac{2}{5}x^5$ Allow one error
			or $-\frac{8}{3}y(4-\frac{1}{2}y)^{\frac{3}{2}}-\frac{32}{15}(4-\frac{1}{2}y)^{\frac{5}{2}}$
	$=\frac{1024}{15}$		or $-\frac{64}{3}(4-\frac{1}{2}y)^{\frac{3}{2}}+\frac{16}{5}(4-\frac{1}{2}y)^{\frac{5}{2}}$
	$\overline{y} = \frac{1024/15}{64/3}$	A1	
	$=\frac{16}{5}=3.2$	M1	Dependent on first two M1's
		A1 7	

MWWW. Mymainscioud.com

1(i)	If δm is change in mass over time δt				
	PCLM $mv = (m + \delta m)(v + \delta v) + \delta m (v - u)$	[N.B.		Observe in respectively even times Σt	
	$\delta m < 0$]		M1	Change in momentum over time δt	
	$(m + \delta m)\frac{\delta v}{\delta t} + u\frac{\delta m}{\delta t} = 0 \Longrightarrow m\frac{\mathrm{d}v}{\mathrm{d}t} = -u\frac{\mathrm{d}m}{\mathrm{d}t}$		M1 A1	Rearrange to produce DE Accept sign error	
	$\frac{\mathrm{d}m}{\mathrm{d}t} = -k \Longrightarrow m = m_0 - kt$		M1	Find <i>m</i> in terms of <i>t</i>	
	$\Rightarrow (m_0 - kt) \frac{\mathrm{d}v}{\mathrm{d}t} = uk$		E1	Convincingly shown	
					5
(ii)	$v = \int \frac{uk}{m_0 - kt} \mathrm{d}t$		M1	Separate and integrate	
	$= -u\ln(m_0 - kt) + c$		A1	cao (allow no constant)	
	$t = 0, v = 0 \Longrightarrow c = u \ln m_0$		M1	Use initial condition	
	$v = u \ln\left(\frac{m_0}{m_0 - kt}\right)$		A1	All correct	
					4
(iii)	$m = \frac{1}{3}m_0 \Longrightarrow m_0 - kt = \frac{1}{3}m_0$		M1	Find expression for mass or time	
	` ر ` <u>` ر</u>		A1	Or $t = 2m_0 / 3k$	
	$\Rightarrow v = u \ln 3$		A1		
					3

2(i)	P = Fv	M1	Used, not just quoted	
	$= mv \frac{\mathrm{d}v}{\mathrm{d}x} v$	M1	Use N2L and expression for acceleration	
	$\Rightarrow mv^2 \frac{\mathrm{d}v}{\mathrm{d}x} = m\left(k^2 - v^2\right)$	A1	Correct DE	
	$\Rightarrow \frac{v^2}{k^2 - v^2} \frac{\mathrm{d}v}{\mathrm{d}x} = 1$	M1	Rearrange	
	$\Rightarrow \left(\frac{k^2}{k^2 - v^2} - 1\right) \frac{\mathrm{d}v}{\mathrm{d}x} = 1$	E1	Convincingly shown	
	$\int \left(\frac{k^2}{k^2 - v^2} - 1\right) \mathrm{d}v = \int \mathrm{d}x$	M1	Separate and integrate	
	$\frac{1}{2}k\ln\left(\frac{k+v}{k-v}\right) - v = x + c$	A1	LHS	
	$x = 0, v = 0 \Longrightarrow c = 0$	M1	Use condition	
	$x = \frac{1}{2}k\ln\left(\frac{k+\nu}{k-\nu}\right) - \nu$	A1	сао	
				9
(ii)	Terminal velocity when acceleration zero $\Rightarrow v = k$	M1 A1		
	$v = 0.9k \Rightarrow x = \frac{1}{2}k \ln\left(\frac{1.9}{0.1}\right) - 0.9k = \left(\frac{1}{2}\ln 19 - 0.9\right)k \approx$	F1	Follow their solution to (i)	
	0.572 <i>k</i>			3

4764	Mark Scheme	June 20	My Arens hainscioud.co.
$3(i) \qquad M = \int_0^a k(a+r) 2\pi r \mathrm{d}r$	M1 M1		
$= 2k\pi \left[\frac{1}{2}ar^{2} + \frac{1}{3}r^{3}\right]_{0}^{a}$	M1 A1	Integrate (for <i>M</i> or <i>I</i>) For […]	
$=\frac{5}{3}k\pi a^3$	E1		
$I = \int_0^a k(a+r) 2\pi r \cdot r^2 \mathrm{d}r$	M1	Integral for I	
$=2k\pi\left[\frac{1}{4}ar^4+\frac{1}{5}r^5\right]_0^a$	A1	For []	
$=\frac{9}{10}k\pi a^5$	A1	сао	
$=\frac{27}{50}Ma^2$	E1	Complete argument (including mass)	_
(ii) $I = 13.5$ $0.625 \times 50 = I\omega$	B1 M1 M1	Seen or used (here or later) Use angular momentum Use moment of impulse	9
$\Rightarrow \omega \approx 2.31$	A1	cao	4
iii) $\ddot{\theta} = \frac{30 - 2.31}{20} \approx 1.38$	M1	Find angular acceleration	_
Couple = $I\ddot{\theta}$	M1	Use equation of motion	
≈18.7	F1	Follow their ω and <i>I</i>	3
iv) $I\ddot{\theta} = -3\dot{\theta}$	B1	Allow sign error and follow their <i>I</i> (but not <i>M</i>)	
$I \frac{\mathrm{d}\dot{\theta}}{\mathrm{d}t} = -3\dot{\theta}$	M1	Set up DE for $\dot{ heta}$ (first order)	
$\int \frac{\mathrm{d}\dot{\theta}}{\dot{\theta}} = \int -\frac{3}{I} \mathrm{d}t$	M1	Separate and integrate	
$\ln\left \dot{\theta}\right = -\frac{t}{4.5} + c$	B1	$\ln(\text{multiple of }\dot{ heta})$ seen	
$\dot{\theta} = A \mathrm{e}^{-t/4.5}$	M1	Rearrange, dealing properly with constant	
$t = 0, \dot{\theta} = 30 \Longrightarrow A = 30$	M1	Use condition on $\dot{\theta}$	
$\dot{\theta} = 30 \mathrm{e}^{-t/4.5}$	A1	Γ	7
(v) Model predicts $\dot{\theta}$ never zero ir	n finite time. B1	Γ	1

1764 Mark S	cheme	June EPE term	W. Mynal
(i) $V = \frac{1}{2} \left(\frac{mg}{10a}\right) (a\theta)^2 + mga\cos\theta$ (relative to centre	M1	EPE term	
of pulley)	B1 M1 A1	Extension $= a\theta$ GPE relative to any zero level (± constant)	
$\frac{\mathrm{d}V}{\mathrm{d}\theta} = \frac{1}{2} \left(\frac{mg}{10a}\right) \cdot 2a^2\theta - mga\sin\theta$	M1	Differentiate	
$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga\left(\frac{1}{10}\theta - \sin\theta\right)$	E1		
$\theta = 0 \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}\theta} = mga\left(\frac{1}{10}(0) - \sin 0\right) = 0$	M1	Consider value of $\frac{dV}{d\theta}$	6
hence equilibrium $\frac{d^2 V}{d\theta^2} = mga\left(\frac{1}{10} - \cos\theta\right)$	E1 M1 A1	Differentiate again	
$d\theta^2$ V''(0) = -0.9mga < 0 hence unstable	M1 E1	Consider sign of <i>V</i> " <i>V</i> " must be correct	
 If the pulley is smooth, then the tension in the string is constant. 	B1		6
Hence the EPE term is valid.	B1		2
(v) Equilibrium positions at $\theta = 2.8$, $\theta = 7.1$ and $\theta = 8.4$	B1 B1	One correct All three correct, no extras Accept answers in [2.7,3.0), [7,7.2], [8.3,8.5]	
From graph, $V''(2.8) = mgaf'(2.8) > 0$	M1	Consider sign of V'' or f'	
hence stable at $\theta = 2.8$ $V''(7.1) = mgaf'(7.1) < 0 \Rightarrow$ unstable at $\theta = 7.1$ $V''(8.4) = mgaf'(8.4) > 0 \Rightarrow$ stable at $\theta = 8.4$	A1 A1 A1	Accept no reference to V'' for one conclusion but other two must relate to sign of V'' , not just f'.	
/)		-	6
	B1	P in approximately correct place	
PB	B1	B in approximately correct place	2
vi) If $\theta < 0$ then expression for EPE not valid hence not necessarily an equilibrium position.	M1 A1		2

4766 Statistics 1

4766	Mark Scheme	June 20	math
47	66 Statistics 1		00
Q1	Mean = 7.35 (or better)	B2cao $\sum fx = 323.5$	
(i)	Standard deviation: 3.69 – 3.70 (awfw)	B2cao $\sum fx^2$ = 2964.25	
	Allow $s^2 = 13.62$ to 13.68	(B1) for variance s.o.i.o	
	Allow rmsd = 3.64 – 3.66 (awfw)	(B1) for rmsd	
	After B0, B0 scored then if at least 4 correct mid-points	(B1) mid-points	
	seen or used.{ 1.5, 4, 6, 8.5, 15 } Attempt of their mean = $\frac{\sum fx}{44}$, with 301 ≤ fx ≤ 346 and fx	(B1) 6.84≤mean≤7.86	4
	44 strictly from mid-points not class widths or top/lower boundaries.		
(ii)	Upper limit = $7.35 + 2 \times 3.69 = 14.73$ or 'their sensible mean' + $2 \times$ 'their sensible s.d.'	M1 (with s.d. < mean)	
	So there could be one or more outliers	E1 dep on B2, B2 earned and comment	2
		TOTAL	6
Q2 (i)	$P(W) \times P(C) = 0.20 \times 0.17 = 0.034$ P(W(C)) = 0.06 (given in the question)	M1 for multiplying or 0.034 seen	
	P(W ∩C) = 0.06 (given in the question) Not equal so not independent (Allow 0.20 × 0.17 ≠ 0.06 or	A1 (numerical	
	\neq p (W \cap C) so not independent).	justification needed)	2
(ii)			
		G1 for two overlapping circles labelled	
		G1 for 0.06 and either	
	0.1 0.06 0.11	0.14 or 0.11 in the	
		correct places	
		G1 for all 4 correct probs in the correct	3
	0.69	places (including the 0.69)	5
		NB No credit for Karnaugh maps here	
	The last two G marks are independent of the labels		
(iii)		M1 for 0.06 / 0.17	
	$P(W C) = \frac{P(W \cap C)}{P(C)} = \frac{0.06}{0.17} = \frac{6}{17} = 0.353 \text{ (awrt 0.35)}$	A1 cao	2
	r(C) 0.17 17	ATCau	

		LIFT Once the correct idea is seen, apply ISW	12	
4766	Mark Scheme	June 20	Mathscip	
(iv)	Children are more likely than adults to be able to speak	E1FT Once the correct idea is seen, apply ISW	1 49.0	2
	Welsh or 'proportionally more children speak Welsh than adults'	ועכם ום שברו, מאמיז וסיי		SU
	Do not accept: 'more Welsh children speak Welsh than adults'			
		TOTAL	8	
Q3	$(A) \qquad 0.5 + 0.35 + p + q = 1$			İ
(i)	so $p + q = 0.15$	B1 p + q in a correct	1	ļ
	(B) $0 \times 0.5 + 1 \times 0.35 + 2p + 3q = 0.67$	equation before they reach $p + q = 0.15$		ļ
	so $2p + 3q = 0.32$			ļ
	(C) from above $2p + 2q = 0.30$	B1 2p + 3q in a correct	1	
	so $q = 0.02, p = 0.13$	equation before they reach 2p + 3q = 0.32		
		(B1) for any 1 correct answer B2 for both correct	2	
(ii)		answers M1 $\Sigma x^2 p$ (at least 2	—	
	$E(X^2) = 0 \times 0.5 + 1 \times 0.35 + 4 \times 0.13 + 9 \times 0.02 = 1.05$	non zero terms correct) M1dep for (-0.67^2) ,		
	Var(X) = 'their 1.05' - 0.67 ² = 0.6011 (awrt 0.6)	provided Var(<i>X</i>) > 0 A1 cao (No n or n-1	3	
	(M1, M1 can be earned with their p ⁺ and q ⁺ but not A mark)	divisors)	7	
Q4	X ~ B(8, 0.05)		_ 	
(i)	(A) $P(X = 0) = 0.95^8 = 0.6634$ 0.663 or better	M1 0.95 ⁸ A1 CAO Or B2 (tables)	2	
	<i>Or</i> using tables $P(X = 0) = 0.6634$			
	(B) $P(X = 1) = \binom{8}{1} \times 0.05 \times 0.95^7 = 0.2793$	M1 for $P(X = 1)$ (allow 0.28 or better) M1 for $1 - P(X \le 1)$	3	
	P(X > 1) = 1 - (0.6634 + 0.2793) = 0.0573	must have both probabilities A1cao (0.0572 –		
	Or using tables $P(X > 1) = 1 - 0.9428 = 0.0572$	0.0573) M1 for P(X ≤ 1) 0.9428		
		M1 for $1 - P(X \le 1)$ A1 cao (must end in2)		
(ii)	Expected number of days = $250 \times 0.0572 = 14.3$ awrt	M1 for 250 x prob(B) A1 FT but no rounding at end	2	
		TOTAL	7	

4766	Mark Scheme	www.mj June 20	AN INaths	Name Coloud.com
Q5 (i)	Let p = probability of remembering or naming all items (for population) (whilst listening to music.) H ₀ : p = 0.35 H ₁ : p > 0.35 H ₁ has this form since the student believes that the	B1 for definition of p B1 for H ₀ B1 for H ₁ E1dep on p>0.35 in H ₀		t.com
	probability will be increased/ improved/ got better /gone up.	In words not just because p > 0.35	4	
(ii)	Let $X \sim B(15, 0.35)$ <i>Either</i> : $P(X \ge 8) = 1 - 0.8868 = 0.1132 > 5\%$ Or 0.8868 < 95% So not enough evidence to reject H ₀ (Accept H _o)	<i>Either:</i> M1 for probability (0.1132) M1 dep for comparison A1 dep		
	Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.)	E1dep on all previous marks for conclusion in context		
	Or: Critical region for the test is {9,10,11,12,13,14,15} 8 does not lie in the critical region. So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.)	Or: M1 for correct CR(no omissions or additions) M1dep for 8 does not lie in CR A1dep E1dep on all previous marks for conclusion in context		
	Or:In the smallest critical region that 8 could fall into is $\{8, 9, 10, 11, 12, 13, 14, and 15\}$. The size of this region is 0.11320.1132 > 5%So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved (when listening to music)	Or: M1 for CR{8,9,15}and size = 0.1132 M1 dep for comparison A1dep E1dep on all previous marks for conclusion in context		
		TOTAL	4 8	

4766	Mark Scheme	June 20	My Mathsclot
	Section B		
Q6 (i)	(<i>A</i>) P(both rest of UK) = 0.20 × 0.20 = 0.04	M1 for multiplying A1cao	2
	(<i>B</i>) Either: All 5 case P(at least one England) = (0.79 x 0.20) + (0.79 x 0.01) + (0.20 x 0.79) + (0.01 x 0.79) + (0.79 x 0.79)	M1 for any correct term (3case or 5case) M1 for correct sum of	
	= 0.158 + 0.0079 + 0.158 + 0.0079 + 0.6241 = 0.9559 Or	all 3 (or of all 5) with no extras A1cao (condone 0.96 www)	
	P(at least one England) = $1 - P(\text{neither England})$ = $1 - (0.21 \times 0.21) = 1 - 0.0441 = 0.9559$ or listing all = $1 - \{ (0.2 \times 0.2) + (0.2 \times 0.01) + (0.01 \times 0.20) + (0.01 \times 0.01) \}$ = $1 - \{ (0.04 + 0.002 + 0.002 + 0.0001) \}$ = $1 - \{ 0.044 + 0.002 + 0.002 + 0.0001) \}$ = $1 - 0.0441$ = 0.9559	Or M1 for 0.21×0.21 or for (**) fully enumerated or 0.0441 seen M1 dep for 1 – (1 st part) A1cao	
	Or: All 3 case P(at least one England) = = $0.79 \times 0.21 + 0.21 \times 0.79 + 0.79^{2}$ = $0.1659 + 0.1659 + 0.6241$ = 0.9559	See above for 3 case	3
	(<i>C</i>) <i>Either</i> 0.79 x 0.79 + 0.79 x 0.2 + 0.2 x 0.79 + 0.2 x 0.2 = 0.9801 Or	M1 for sight of all 4 correct terms summed A1 cao (condone 0.98 www) or	
	$0.99 \times 0.99 = 0.9801$ Or $1 - \{0.79 \times 0.01 + 0.2 \times 0.01 + 0.01 \times 0.79 + 0.01 \times 0.02 + 0.01^2\} = 1 - 0.0199$ = 0.9801	M1 for 0.99 x 0.99 A1cao Or M1 for everything 1 – {} A1cao	2
(ii)	P(both the rest of the UK neither overseas) = $\frac{P(\text{the rest of the UK and neither overseas})}{P(\text{neither overseas})}$	M1 for numerator of 0.04 or 'their answer to (i)(A)'	
	$= \frac{0.04}{0.9801} = 0.0408$ {Watch for: $\frac{answer(A)}{answer(A)}$ as evidence of method (p <1)}	M1 for denominator of 0.9801 or 'their answer to (i) (C)' A1 FT ($0) 0.041 at$	
	{Watch for: $\frac{1}{answer(C)}$ as evidence of method (p <1)}	least	3

4766	Mark Scheme	Mun.rs June 20 M1 for 0.79 ⁵ or	And Asins
(iii)	(A) Probability = $1 - 0.79^5$ = $1 - 0.3077$ = 0.6923 (accept awrt 0.69) see additional notes for alternative solution (B) $1 - 0.79^n > 0.9$ EITHER: $1 - 0.79^n > 0.9$ or $0.79^n < 0.1$ (condone = and \geq throughout) but not reverse inequality $n > \frac{\log 0.1}{\log 0.79}$, so $n > 9.768$	M1 for 0.79 ⁵ or 0.3077 M1 for 1 – 0.79 ⁵ dep A1 CAO M1 for equation/inequality in n (accept either statement opposite) M1(indep) for process	
	Minimum $n = 10$ Accept $n \ge 10$	of using logs i.e. $\frac{\log a}{\log b}$ A1 CAO	3
	OR (using trial and improvement): Trial with 0.79 ⁹ or 0.79 ¹⁰	M1(indep) for sight of 0.8801 or 0.1198	
	1 – 0.79 ⁹ = 0.8801 (< 0.9) or 0.79 ⁹ = 0.1198 (> 0.1)	M1(indep) for sight of 0.9053 or 0.09468	3
	$1 - 0.79^{10} = 0.9053 (> 0.9) \text{ or } 0.79^{10} = 0.09468 (< 0.1)$	A1 dep on both M's cao	
	Minimum <i>n</i> = 10 Accept n ≥ 10		
	NOTE: $n = 10$ unsupported scores SC1 only		
		TOTAL	16

4766	Mark Scheme	June 20	AMA ASIAS
Q7 (i)	Positive	B1	1
(ii)	Number of people = 20 × 33 (000) + 5 × 58 (000) = 660 (000) + 290 (000) = 950 000	M1 first term M1(indep) second term A1 cao NB answer of 950 scores M2A0	3
(iii)	(A) $a = 1810 + 340 = 2150$ (B) Median = age of 1 385 (000 th) person or 1385.5 (000) Age 30, cf = 1 240 (000); age 40, cf = 1 810 (000) Estimate median = (30) + $\frac{145}{570} \times 10$	M1 for sum A1 cao 2150 or 2150 thousand but not 215000 B1 for 1 385 (000) or 1385.5 M1 for attempt to	2
	Median = 32.5 years (32.54) If no working shown then 32.54 or better is needed to gain the M1A1. If 32.5 seen with no previous working allow SC1	interpolate $\frac{145k}{570k} \times 10$ (2.54 or better suggests this) A1 cao min 1dp	
(iv)	Frequency densities: 56, 65, 77, 59, 45, 17 (accept 45.33 and 17.43 for 45 and 17)	B1 for any one correct B1 for all correct (soi by listing or from histogram)	
		Note: all G marks below <i>dep</i> on attempt at frequency density, NOT frequency G1 Linear scales on both axes (no inequalities) G1 Heights FT their listed fds or all must be correct. Also widths. All blocks joined	
		G1 Appropriate label for vertical scale eg 'Frequency density (thousands)', 'frequency (thousands) per 10 years', 'thousands of people per 10 years'. (allow key). OR f.d.	5

		www.	Mymathscioud.co.
4766	Mark Scheme	June 20	Mathsci
(v)			1040.CO
(*)	Any two suitable comments such as:	E1	
	$O_{\rm ext}$ is a second properties (or $\theta($) of people	E1	
	Outer London has a greater proportion (or %) of people		
	under 20 (or almost equal proportion)		
	The modal group in Inner London is 20-30 but in Outer London it is 30-40		
	Outer London has a greater proportion (14%) of aged 65+		
	All populations in <u>each</u> age group are higher in Outer London		
	Outer London has a more evenly spread distribution or balanced distribution (ages) o.e.		2
(vi)	Mean increase ↑ median unchanged (-) midrange increase ↑	Any one correct B1 Any two correct B2 Any three correct B3 All five correct B4	
	standard deviation increase ↑ interquartile range unchanged. (-)		4
		TOTAL	20

MWWW. My Marks Marks June 20. Painscioud.com

4767 Statistics 2

Question 1

Ques	stion 1		
(i)	EITHER:	M4 for mother 1 for O	
	$S_{xy} = \Sigma xy - \frac{1}{n}\Sigma x\Sigma y = 880.1 - \frac{1}{48} \times 781.3 \times 57.8$	M1 for method for S_{xy}	
	= -60.72	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{XX} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 14055 - \frac{1}{48} \times 781.3^2 = 1337.7$	A1 for at least one of	
	$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 106.3 - \frac{1}{48} \times 57.8^2 = 36.70$	S_{xy} , S_{xx} , S_{yy} . correct M1 for structure of <i>r</i>	
	$r = \frac{S_{xy}}{\sqrt{S_{xy}S_{xy}}} = \frac{-60.72}{\sqrt{1337.7 \times 36.70}} = -0.274$	A1 CAO (-0.27 to -0.28)	
	OR:	M1 for method for $cov(x,y)$	
	$\operatorname{cov} (x, y) = \frac{\sum xy}{n} - \overline{xy} = 880.1/48 - 16.28 \times 1.204$ $= -1.265$	M1 for method for at least	
	$rmsd(x) = \sqrt{\frac{S_{xx}}{n}} = \sqrt{(1337.7/48)} = \sqrt{27.87} = 5.279$	one msd A1 for at least one of cov/msd_correct	
	rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(36.70/48)} = \sqrt{0.7646} = 0.8744$	M1 for structure of r A1 CAO (-0.27 to -0.28)	5
	$r = \frac{\text{cov}(x,y)}{\text{rmsd}(x)\text{rmsd}(y)} = \frac{-1.265}{5.279 \times 0.8744} = -0.274$		
(ii)	H ₀ : $\rho = 0$ H ₁ : $\rho < 0$ (one-tailed test)	B1 for H_0 , H_1 in symbols	
	where $ ho$ is the population correlation coefficient	B1 for defining ρ	
	For <i>n</i> = 48, 5% critical value = 0.2403	B1FT for critical value	
	Since $ - 0.274 > 0.2403$ we can reject H ₀ :	M1 for sensible comparison leading to a	6
	There is sufficient evidence at the 5% level to suggest that there is negative correlation between education spending and population growth.	conclusion A1 for result (FT r<0) E1 FT for conclusion in words	
(iii)	Underlying distribution must be bivariate Normal. If the distribution is bivariate Normal then the scatter diagram will have an elliptical shape.	B1 CAO for bivariate Normal B1 indep for elliptical shape	2
(iv)	 Correlation does not imply causation There could be a third factor increased growth could cause lower spending. 	E1 E1 E1	
	Allow any sensible alternatives, including example of a possible third factor.		3
(v)	Advantage – less effort or cost Disadvantage – the test is less sensitive (ie is less	E1	2
	likely to detect any correlation which may exist)	E1	2 18

4767		June	20 Nathscioud. Co	
Ques	$a = 0.37^2$	M1	10.0	02
(i)	(A) $P(X=2) = e^{-0.37} \frac{0.37^2}{2!} = 0.0473$	A1 (2 s.f.)		<i>.1</i>
	(<i>B</i>) $P(X > 2)$			
	$= 1 - (e^{-0.37} \frac{0.37^2}{2!} + e^{-0.37} \frac{0.37^1}{1!} + e^{-0.37} \frac{0.37^0}{0!})$ = 1 - (0.0473 + 0.2556 + 0.6907) = 0.0064	M1 for $P(X = 1)$ and P(X = 0) M1 for complete method A1 NB Answer given	5	
(ii)	P(At most one day more than 2)			
	$= \binom{30}{1} \times 0.9936^{29} \times 0.0064 + 0.9936^{30} =$	M1 for coefficient M1 for $0.9936^{29} \times 0.0064$ M1 for 0.993630	4	
	= 0.1594 + 0.8248 = 0.9842	A1 CAO (min 2sf)		
(iii)	$\lambda = 0.37 \times 10 = 3.7$	B1 for mean (SOI)		
	P(X > 8) = 1 - 0.9863	M1 for probability	3	
	= 0.0137	A1 CAO		
(iv)	Mean no. per 1000ml = 200 × 0.37 = 74			
	Using Normal approx. to the Poisson,	B1 for Normal approx. with correct parameters		
	$X \sim N(74, 74)$	(SOI)		
	P(X > 90) = P $\left(Z > \frac{90.5 - 74}{\sqrt{74}}\right)$	B1 for continuity corr.	4	
	$= P(Z > 1.918) = 1 - \Phi(1.918)$	M1 for probability using		
	= 1 - 0.9724 = 0.0276	correct tail A1 CAO (min 2 s.f.) , (but FT wrong or omitted CC)		
(v)	$P(questionable) = 0.0064 \times 0.0137 \times 0.0276$	M1		
	$= 2.42 \times 10^{-6}$	A1 CAO	2	
			18	

Question 3

		www	N. My Mains
4767	Mark Scheme	June 2	10 Maths
Que	stion 3		CIOLO
(i)	$X \sim N(27500,4000^{2})$ $P(X > 25000) = P\left(Z > \frac{25000 - 27500}{4000}\right)$ $= P(Z > -0.625)$ $= \Phi(0.625) = 0.7340 \text{ (3 s.f.)}$	A1 for -0.625 M1 <i>dep</i> for correct tail A1CAO (must include use	4
(ii)	P(7 of 10 last more than 25000) = $\binom{10}{7} \times 0.7340^7 \times 0.2660^3 = 0.2592$	of differences) M1 for coefficient M1 for $0.7340^7 \times 0.2660^3$ A1 FT (min 2sf)	3
(iii)	From tables $\Phi^{-1}(0.99) = 2.326$ $\frac{k - 27500}{4000} = -2.326$ $x = 27500 - 2.326 \times 4000 = 18200$	B1 for 2.326 seen M1 for equation in <i>k</i> and negative z-value A1 CAO for awrt 18200	3
(iv)	H ₀ : μ = 27500; H ₁ : μ > 27500 Where μ denotes the mean lifetime of the new tyres.	B1 for use of 27500 B1 for both correct B1 for definition of μ	3
(v)	Test statistic = $\frac{28630 - 27500}{4000/\sqrt{15}} = \frac{1130}{1032.8}$ = 1.094 5% level 1 tailed critical value of <i>z</i> = 1.645 1.094 < 1.645 so not significant. There is not sufficient evidence to reject H ₀ There is insufficient evidence to conclude that the new tyres last longer.	 M1 must include √ 15 A1 FT B1 for 1.645 M1 <i>dep</i> for a sensible comparison leading to a conclusion A1 for conclusion in words in context 	5
			18

4767	Mark Scheme	June 2	N. My Marins 20. Mainscloud.col
Ques	stion 4		Cloud
(i)	H_0 : no association between location and species. H_1 : some association between location and species.	B1 for both	1
(ii)	Expected frequency = $38/160 \times 42 = 9.975$ Contribution = $(3 - 9.975)^2 / 9.975$ = 4.8773	M1 A1 M1 for valid attempt at (O-E) ² /E A1 NB Answer given	4
(iii)	Refer to χ_4^2 Critical value at 5% level = 9.488	B1 for 4 deg of f(seen) B1 CAO for cv	
	Test statistic X^2 = 32.85 Result is significant	M1 Sensible comparison, using 32.85, leading to a conclusionA1 for correct conclusion (FT their c.v.)	5
	There appears to be some association between location and species NB if $H_0 H_1$ reversed, or 'correlation' mentioned, do not	E1 conclusion in context	
(iv)	 award first B1or final E1 Limpets appear to be distributed as expected throughout all locations. Mussels are much more frequent in exposed locations and much less in pools than expected. Other shellfish are less frequent in exposed locations and more frequent in pools than expected. 	E1 E1, E1 E1, E1	5
(v)	$\frac{24}{53} \times \frac{32}{65} \times \frac{16}{42} = 0.0849$	M1 for one fraction M1 for product of all 3 A1 CAO	3
			18

WWWW. Mymainscioud.com

4768 Statistics 3

Q1	$f(x) = k(20 - x)$ $0 \le x \le 20$			
(a) (i)	$\int_{0}^{20} k(20-x) dx = \left[k \left(20x - \frac{x^2}{2} \right) \right]_{0}^{20} = k \times 200 = 1$	M1	Integral of $f(x)$, including limits (which may appear later), set equal to 1. Accept a geometrical	
	$\therefore k = \frac{1}{200}$	A1	approach using the area of a triangle. C.a.o.	
	Straight line graph with negative gradient, in the first quadrant.	G1		
	Intercept correctly labelled (20, 0), with nothing extending beyond these points.	G1		
	Sarah is more likely to have only a short time to wait for the bus.	E1		5
(ii)	Cdf F(x) = $\int_0^x f(t) dt$ = $\frac{1}{200} \left(20x - \frac{x^2}{2} \right)$ x x^2	M1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.	
	$=\frac{x}{10}-\frac{x^2}{400}$	A1	Or equivalent expression; condone absence of domain [0, 20].	
	P(X > 10) = 1 - F(10) = 1 - (1 - 1/4) = 1/4	M1 A1	Correct use of c's cdf. f.t. c's cdf. Accept geometrical method, e.g area = $\frac{1}{2}(20 - 10)f(10)$, or similarity.	4
(iii)	Median time, <i>m</i> , is given by $F(m) = \frac{1}{2}$.	M1	Definition of median used, leading to the formation of a quadratic equation.	
	$\therefore \frac{m}{10} - \frac{m^2}{400} = \frac{1}{2}$ $\therefore m^2 - 40m + 200 = 0$ $\therefore m = 5.86$	M1 A1	Rearrange and attempt to solve the quadratic equation. Other solution is 34.14; no explicit reference to/rejection of it is required.	3

4768	Mark Sch	eme	June 2	nymai,	My Assus
(b) (i)	A simple random sample is one where every sample of the required size has an equal chance of being chosen.	E2	S.C. Allow E1 for "Every member of the population has an equal chance of being chosen independently of every other member".	2	·Com
(ii)	Identify clusters which are capable of representing the population as a whole. Choose a random sample of clusters. Randomly sample or enumerate within the chosen clusters.	E1 E1 E1		3	
(iii)	A random sample of the school population might involve having to interview single or small numbers of pupils from a large number of schools across the entire country. Therefore it would be more practical to use a cluster sample.	E1 E1	For "practical" accept e.g. convenient / efficient / economical.	2	
				19	

4768	3 Mark Sche	eme	איזעע June 2	. mymai	1 M ASINS
Q2	$A \sim N(100, \sigma = 1.9)$ $B \sim N(50, \sigma = 1.3)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.		cloud.com
(i)	$P(A < 103) = P\left(Z < \frac{103 - 100}{1.9} = 1.5789\right)$ $= 0.9429$	M1 A1 A1	For standardising. Award once, here or elsewhere.	3	
	= 0.9429		C.a.o.	3	l
(ii)	$A_1 + A_2 + A_3 \sim N(300,$	B1	Mean.		l
	$\sigma^2 = 1.9^2 + 1.9^2 + 1.9^2 = 10.83)$ P(this > 306) =	B1	Variance. Accept sd (= 3.291).		l
	$P\left(Z > \frac{306 - 300}{3 \cdot 291} = 1 \cdot 823\right) = 1 - 0 \cdot 9658 = 0.0342$	A1	c.a.o.	3	
(iii)	$A + B \sim N(150,$	B1	Mean.		I
	$\sigma^2 = 1.9^2 + 1.3^2 = 5.3$)	B1	Variance. Accept sd (= 2.302).		I
	P(this > 147) = P($Z > \frac{147 - 150}{2 \cdot 302} = -1.303$)				l
	= 0.9037	A1	c.a.o.	3	
(iv)	$B_1 + B_2 - A \sim N(0,$	B1	Mean. Or $A - (B_1 + B_2)$.		I
	$1 \cdot 3^{2} + 1 \cdot 3^{2} + 1 \cdot 9^{2} = 6 \cdot 99)$ $P(-3 < \text{this} < 3)$ $= P\left(\frac{-3 - 0}{2.644} < Z < \frac{3 - 0}{2.644}\right) = P(-1 \cdot 135 < Z < 1 \cdot 135)$	B1 M1 A1	Variance. Accept sd (= 2.644). Formulation of requirement two sided.		
	(2.644) = 2 × 0.8718 - 1 = 0.7436	A1	c.a.o.	5	
(v)	Given $\bar{x} = 302.3$ $s_{n-1} = 3.7$ Cl is given by $302.3 \pm 1.96 \times \frac{3.7}{\sqrt{100}}$	M1	Correct use of 302.3 and $3.7/\sqrt{100}$.		
	= $302 \cdot 3 \pm 0.7252 = (301.57(48), 303.02(52))$	B1 A1	For 1.96 c.a.o. Must be expressed as an interval.		
	The batch appears not to be as specified since 300 is outside the confidence interval.	E1		4	
				18	I

4768	3 Mark Sch	eme	June 2	In Marins Cloud Com
Q3				Sud Com
(a) (i)	H ₀ : $\mu_D = 0$ (or $\mu_l = \mu_{ll}$) H ₁ : $\mu_D \neq 0$ (or $\mu_{ll} \neq \mu_l$) where μ_D is "mean for II – mean for I"	B1 B1	Both. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X}_{I} = \overline{X}_{II}$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	
(ii)	Normality of <u>differences</u> is required.	B1		3
	Differences are:	- <u>14.9</u> B1 M1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	Refer to <i>t</i> ₇ . Double-tailed 5% point is 2.365. Not significant. Seems there is no difference between the mean yields of the two types of plant.	M1 A1 A1 A1	No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_8 and 2.306) can score 1 of these last 2 marks if either form of conclusion is given.	7

4768	Mark Schem	e June 2	TRYMainscioud.com
(b) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-14 -3 6 10 2 5 M A B	 For differences. ZERO in this section if differences not used. For ranks. FT from here if ranks wrong 	Com
Refer to tables of Wilcoxon p sample) statistic for $n = 10$. Lower (or upper if 46 used) of 5% point is 8 (or 47 if 46 used) Result is not significant. No evidence to suggest the to the whole.	double-tailed A ed).	 i.e. a 2-tail test. No ft from here if wrong. ft only c's test statistic. 	8
			18

										mm	MM	MM Natis Inscioud.com
4768	4768 Mark Scho					neme				June 2	0. 79	the che
Q4												OUD.COM
(a) (i)	$\overline{x} = \frac{310}{100} = 3$ $s^{2} = \frac{1288 - 3}{100}$ Evidence of a variance is	$\frac{100 \times 3.1^2}{99}$ could sup	pport Po	isson sin		B1 B1 E1					3	
(ii)	variance is											
(,	f _o	6	16	19	18	17	14	6	4	0		
	f _e	4.50 2	13.97 2	21.65	22.37	17.33	10.75	5.55	2.46	1.42		
	Merged		.47						9.43			
						M1 A1 A1	Calculati frequenc Last cell All other	cies. correct.	-	wrong.		
	$X^2 = 0.67$	' 47 + 0.3	244 + 0.	8537 + 0).0063 +	M1 M1	Combini combine above, b combine Calculati	d as full out requi d as a n	y as sho re top tw ninimum	wn o cells		
	$\begin{aligned} \chi^2 &= 0.6747 + 0.3244 + 0.8537 + 0.0063 + \\ & 0.9826 + 0.0345 \\ &= 2.876(2) \end{aligned}$ Refer to χ^2_4 . e.g. Upper 10% point is 7.779.			A1	(Condon Depends precedin	s on both	n of the	.)				
				M1	Allow co wrongly table, an wrong.	grouped	l or ungro	,				
	Not signifi					A1	ft only c'					
	Suggests at any r					A1 A1	ft only c' Or other			ent.	10	
(b)	(b) CI is given by 1.465 \pm 2.262				M1	If <u>both</u> 1 correct.	.465 and	d 0.3288/-	$\sqrt{10}$ are			
					B1 B1	lf t₀ use 95% 2-ta		for c's t				
				0 3260			distribution previous	on (Inde		of		
			>	$<\frac{0.3288}{\sqrt{10}}$								
	= 1.46	5 ± 0.23	52= (1.2	298, 1.70	002)	A1	c.a.o. Mi interval.	ust be ex	xpressec	l as an	4	
											17	

WWWW. Mymainscioud.com

4769

4769 Statistics 4

Q1 (i)				
	$\mathbf{L} = \frac{e^{-\theta}\theta^{x_1}}{x_1!} \dots \frac{e^{-\theta}\theta^{x_n}}{x_n!} \left[= \frac{e^{-n\theta}\theta^{\sum x_i}}{x_1!x_2!\cdots x_n!} \right]$	M1 A1	product form fully correct	
	$\ln L = \text{const} - n \theta + \sum x_i \ln \theta$ $d \ln L = \sum x_i$	M1 A1		
	$\frac{d\ln \mathcal{L}}{d\theta} = -n + \frac{\sum x_i}{\theta} = 0$	M1 A1		
	$\Rightarrow \hat{\theta} = \frac{\sum x_i}{n} (= \bar{x})$	A1	CAO	
	Check this is a maximum	M1		
	e.g. $\frac{d^2 \ln L}{d\theta^2} = -\frac{\sum x_i}{\theta^2} < 0$	A1		9
(ii)	$\lambda = P(X = 0) = e^{-\theta}$	B1		1
(iii)	We have $R \sim \mathrm{B}(n, e^{- heta})$,	M1		
	so $E(R) = ne^{-\theta}$	B1		
	$\operatorname{Var}(R) = ne^{-\theta} \left(1 - e^{-\theta}\right)$	B1		
	$\widetilde{\lambda} = \frac{R}{n}$	M1		
	$\therefore \mathrm{E}(\widetilde{\lambda}) = e^{-\theta}$	A1 A1		
	i.e. unbiased $Var(\widetilde{\lambda}) = \frac{e^{-\theta}(1 - e^{-\theta})}{n}$	A1	BEWARE PRINTED ANSWER	7

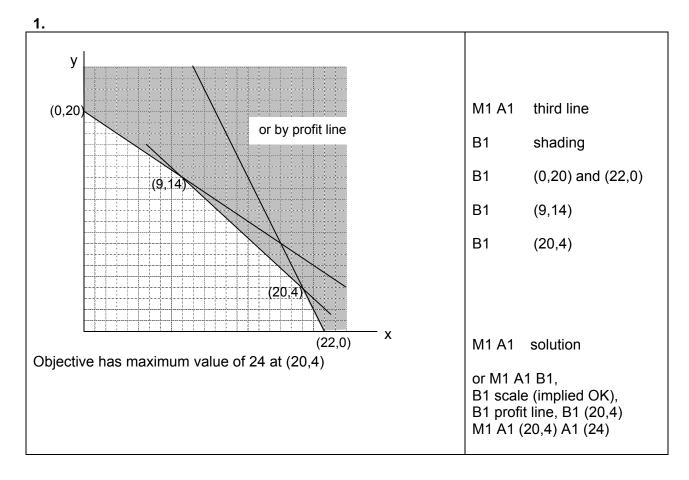
June 20. Mainscio

Eg:- Expression is $\frac{\theta}{\theta + \frac{\theta^2}{2!} + \dots}$ M1always < 1E1and this is ≈ 1 if θ is smallE1 ≈ 0 if θ is largeE1 $\frac{\theta}{e^{\theta} - 1} \rightarrow 0$ as $\theta \rightarrow \infty$	(iv)	Relative efficiency of $\tilde{\lambda}$ wrt ML est $= \frac{Var(ML Est)}{Var(\tilde{\lambda})}$ $= \frac{\theta e^{-2\theta}}{n} \cdot \frac{n}{e^{-\theta} (1 - e^{-\theta})} = \frac{\theta}{e^{\theta} - 1}$	M1 M1 A1	any attempt to compare variances if correct BEWARE PRINTED ANSWER	Cloud.com
and this is ≈ 1 if θ is small ≈ 0 if θ is large		Eg:- Expression is $\frac{\theta}{\theta + \frac{\theta^2}{2!} + \dots}$	M1		
		and this is \approx 1 if θ is small	E1	Allow statement that $\frac{\theta}{e^{\theta}-1} \rightarrow 0 \text{ as } \theta \rightarrow \infty$	

4769	M	lark Scheme	June	20 Rathscioud.
$\begin{array}{c c} \mathbf{Q2} \\ (i) \\ \mathbf{P}(X = .) \end{array}$	$(x) = q^{x-1}p$	B1	FT into pgf only	Jud.
Pgf G($t) = \mathrm{E}(t^{X}) = \sum_{x=1}^{\infty} p t^{x} q^{x-1}$	M1		
1	$(1+qt+q^2t^2+)$ $(1-qt)^{-1}$	A1		
		A1	BEWARE PRINTED ANSWER [consideration of qt < 1	
$\mu = G'($	1) $\sigma^2 = G''(1) + \mu - \mu^2$	M1	for attempt to find G'(<i>t</i>)	
. /	$pt(-1)(1-qt)^{-2}(-q) + p(1-qt)^{-1}$ $-qt)^{-2} + p(1-qt)^{-1}$	t) ⁻¹	and/or G"(<i>t</i>)	
	$= pq(1-q)^{-2} + p(1-q)^{-1} = \frac{q}{p}$ $= pqt(-2)(1-qt)^{-3}(-q) + pq(1)$		BEWARE PRINTED ANSWER	
G(l) =	$p(-1)(1-qt)^{-2}(-q)$	- <i>qi</i>) +		
	$= 2pq^{2}(1-q)^{-3} + pq(1-q)^{-2}			
	p p	р-1 А1 М1	For inserting their values	
	$\frac{2q^2}{p^2} + \frac{2q}{p} + \frac{1}{p} - \frac{1}{p^2} = \frac{2q^2 + 2pq + p^2}{p^2}$ $\frac{q}{p^2}(2q + 2p - 1) = \frac{q}{\underline{p^2}}$	A1	BEWARE PRINTED ANSWER	
				11

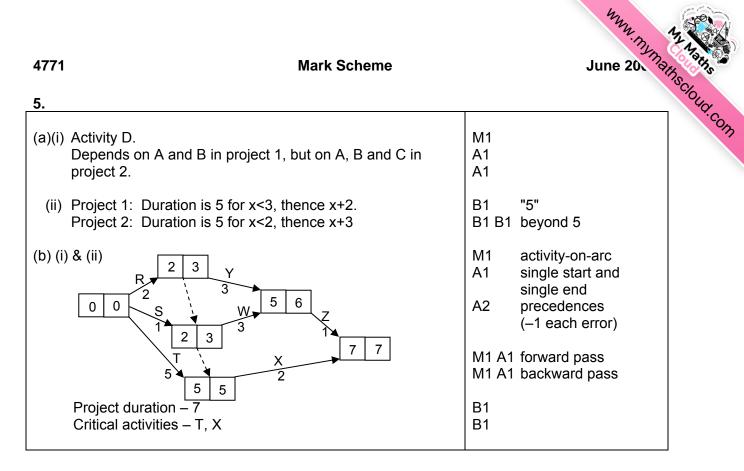
4769) Mark Scheme		hu June	W. Mymarkscioud.co,	
(ii)	$X_{1}=number of trials to first success X_{2}= " " " next " next " $	E1 E1		Sub.co.	2
	$\therefore \text{ pgf of } Y = (\text{pgf of } X)^n = \underline{p^n t^n (1 - qt)^{-n}}$	1			
	$\mu_Y = n\mu_X = \frac{n}{\underline{p}}$	1			
	$\sigma_Y^2 = n\sigma_X^2 = \frac{nq}{\underline{p}^2}$	1		5	
(iii)	N(candidate's $\mu_{\rm Y}$, candidate's $\sigma_{\rm Y}^2$)	1		1	
(iv)	Y = no of tickets to be sold ~ random variable as in (ii) with $n = 140$ and $p = 0.8$ ~ Approx N($\frac{140}{0.8} = 175, \frac{140 \times 0.2}{(0.8)^2} = 43.75$)	E1			
	$P(Y \ge 160) \approx P(N(175,43.75) > 159\frac{1}{2})$	1 M1	Do not award if cty corr absent or wrong, but FT if		
	= P(N(0,1)>-2.343) = 0.9905	A1 A1	160 used → -2.268, 0.9884		
	For any sensible discussion in context (eg groups of passengers \Rightarrow not indep.)	E1 E1	CAO	7	
Q3	X = amount of salt ~ N(μ [750], σ^2 [20 ²]) Sample of <i>n</i> =9				
(i)	Type I error: rejecting null hypothesis when it is true.	B1 B1	Allow B1 for P(rej H₀ when true)		
	Type II error: accepting null hypothesis when it is false.	B1 B1	Allow B1 for P(acc H₀ when false)		
	OC: P (accepting null hypothesis as a function of the parameter under investigation)	B1 B1	[P(type II error the true value of the parameter) scores B1+B1]	6	
(ii)	Reject if $\overline{x} < 735 \text{ or } \overline{x} > 765$ $\alpha = P(\overline{X} < 735 \text{ or } \overline{X} > 765 \overline{X} \sim N(750, \frac{20^2}{9}))$	M1	Might be implicit		
	$= P(Z < \frac{(735 - 750)3}{20} = -2.25$	A1			
	or $Z > \frac{(765 - 750)3}{20} = 2.25)$	A1			
	$= 2(1-0.9878) = 2 \times 0.0122 = 0.0244$	A1	CAO		
	This is the probability of rejecting good output and unnecessarily re-calibrating the machine – seems small [but not very small?]	E1 E1	Accept any sensible comments	6	

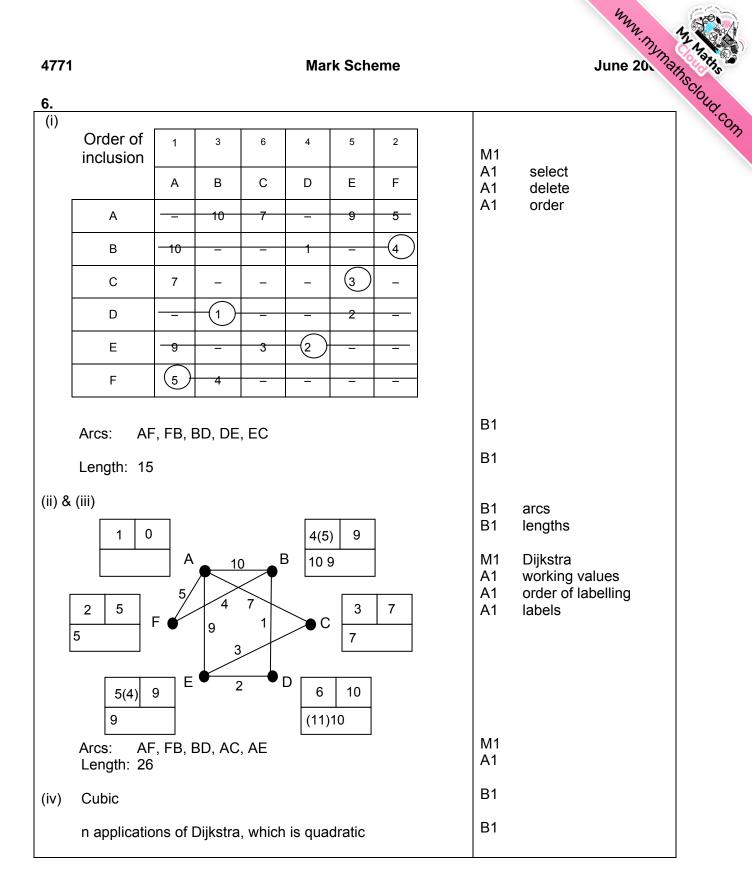
Mark Scheme


4769	Mark Scheme		June	M. Myma	Mu Asens sthscloud.com
(!!!)		-	· · · · · · · · · · · · · · · · · · ·		'SCIOL
(iii)	Accept if $735 < \overline{x} < 765$, and now $\mu = 725$.	M1	might be implicit		40.CO.
	$\beta = P(735 < \overline{X} < 765 \mid \overline{X} \sim N(725, \frac{20^2}{9}))$				-m
	= P(1.5 < Z< 6)	A1 A1			
	= 1 - 0.9332 = 0.0668	A1	CAO		
	This is the probability of accepting output and carrying on when in fact μ has slipped to 725 –	E1 E1	If upper limit 765 not considered, maximum 2 of these 4 marks. If $\Phi(6)$ not considered, maximum 3 out of 4. accept sensible comments	6	
()	small[-ish?]				
(iv)	$OC = P(735 < \overline{X} < 765 \mid \overline{X} \sim N(\mu, \frac{20^2}{9}))$	M1			
	$= \Phi \left(\frac{(765 - \mu)3}{20} \right) - \Phi \left(\frac{(735 - \mu)3}{20} \right) $				
	" Φ − Φ"				
	T T	M1 A1	both correct		
	$ \begin{array}{ll} \mu = 720 \\ (6.75) \\ - \ \Phi(2.25) \\ = 1 \\ - \ 0.9878 \\ = 0.0122 \\ 730 \\ 5.25 \\ 0.75 \\ = 1 \\ - \ 0.7734 \\ = 0.2266 \\ 740 \\ 3.75 \\ - 0.75 \\ = 1 \\ - \ (1 \\ - 0.7734) \\ = 0.7734 \\ \end{array} $	1	if any two correct		
	750: similarly or by write-down from part (ii) [FT] : 0.9756	1			
	760, 770, 780 by symmetry [FT]: 0.7734, 0.2266, 0.0122	1			
				6	
Q4 (i)	$x_{ii} = \mu + \alpha_i + e_{ii}$	1		$\left \right $	
	$\mu = \text{population} \dots$	1			
	grand mean for whole experiment	1 1			
	α_i = population	1			
	mean by which <i>i</i> th treatment differs from μ				
	e_{ij} are experimental errors	1 3	Allow "uncorrelated"		
	~ ind N (0, σ^2)		1 for ind N; 1 for 0; 1 for		
			σ^2 .	9	
(ii)	Totals are 240, 246, 254, 264, 196 each from sample of size 5 Grand total 936 "Correction factor" CF = $\frac{936^2}{20}$ = 43804.8				
	Total SS = 44544 - CF = 739.2				
		L	<u> </u>		

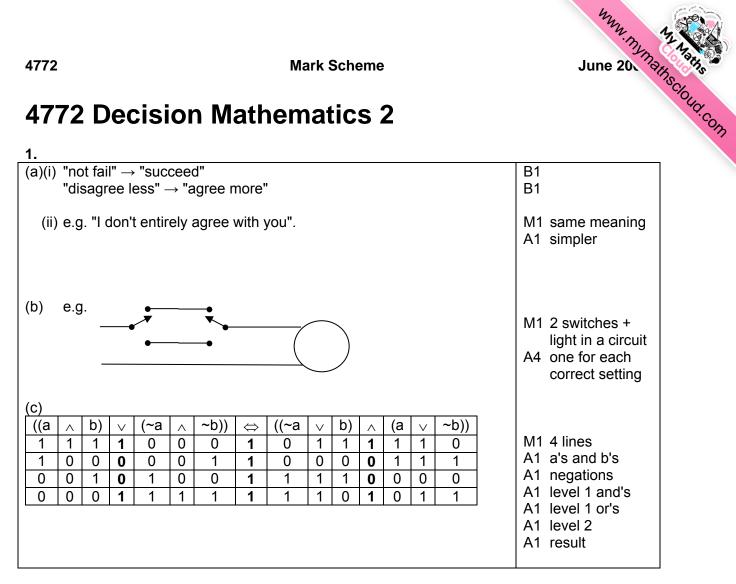
								www.my	34
4769)			M	ark Scheme	9	Jur	ne 20	aths aths
	Between co $\frac{240^2}{5} + \dots +$ Residual SS	$-\frac{196^2}{5}$	- CF = 44			M1 M1 A1	For correct methods for any two, if each calculated SS is correct.		Mu Asens Sthecloud.com
	Source of Variation	SS	df	MS	MS ratio	-• M1 -• M1 -• 1			
	Between Contractors	404.8	3	134.93	6.456 —	► A1			
	Residual	334.4	16	20.9					
	Total	739.2	19 🔪			1	CAO		
	Refer to F _{3,1}	1 I	I	l	l	1	NO FT IF WRONG		
	Upper 5% p		3.24			1	NO FT IF WRONG		
	Significant					1			
	Seems perfe the same	ormance	es of con	tractors a	are not all	1			
								12	
(iii)	Randomised	d blocks	;			B1			
	Description					E1 E1	Take the subject areas as "blocks", ensure each contractor is used at least once in each block		

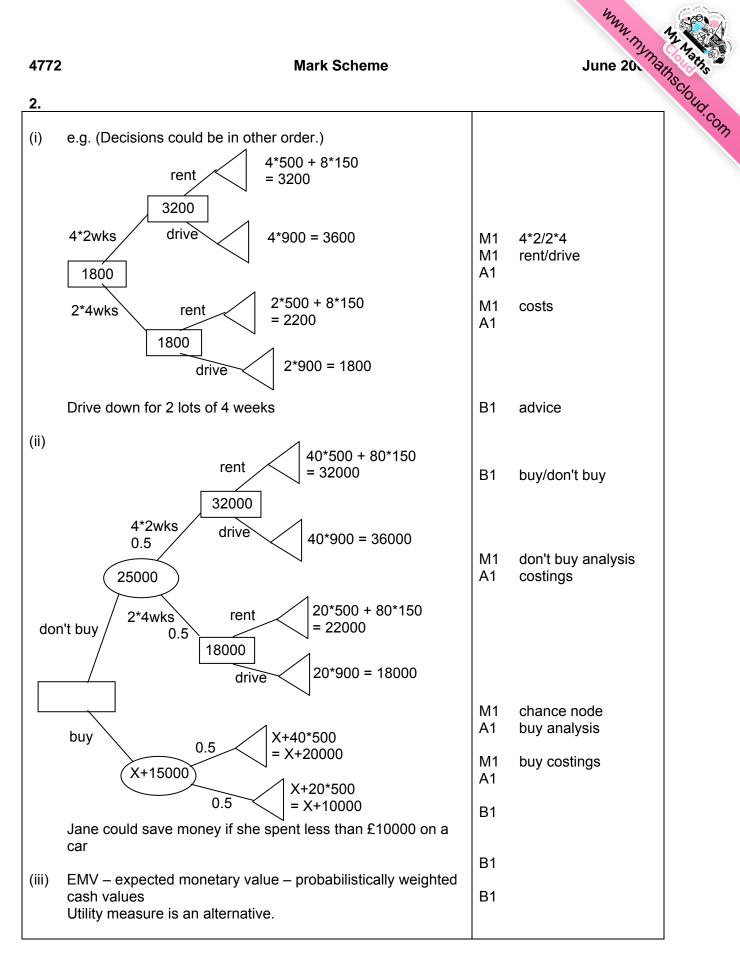
4771 Decision Mathematics 1


Solutions


4771		Mark	Scheme	J	WWW. My Mains une 20. Nains cloud.col.
2.					Uld.C.
(i)		X	Y		-01
	5, 14, 153, 6, 24, 2, 14, 15	5, 14, 153	-		
	5, 14, 6, 24, 14, 15	5, 14, 24	5	M1	
	14, 6, 14, 15,	14, 15	14, 6		
	14, 14	, -	, -		
	Answer = 14	•		A1	
	Answei – 14			AI	
	Comparisons = 30			Δ1	
(ii)	Comparisons = 30			A1	
(ii)	Comparisons = 30	X	Y	A1	
(ii)		X 5, 14, 153		A1	
(ii)	5, 14, 153, 6, 24, 2, 14	5, 14, 153		A1 M1	
(ii)			5, 2		
(ii)	5, 14, 153, 6, 24, 2, 14 5, 14, 6, 24,14	5, 14, 153 5, 14, 24	5, 2 5		
(ii)	5, 14, 153, 6, 24, 2, 14 5, 14, 6, 24,14 14, 6, 14 14	5, 14, 153 5, 14, 24	5, 2 5	M1	
(ii)	5, 14, 153, 6, 24, 2, 14 5, 14, 6, 24,14 14, 6, 14 14 Answer = 14	5, 14, 153 5, 14, 24	5, 2 5		
(ii)	5, 14, 153, 6, 24, 2, 14 5, 14, 6, 24,14 14, 6, 14 14	5, 14, 153 5, 14, 24	5, 2 5	M1 A1	
	5, 14, 153, 6, 24, 2, 14 5, 14, 6, 24,14 14, 6, 14 14 Answer = 14	5, 14, 153 5, 14, 24	5, 2 5	M1 A1	
(iii)	5, 14, 153, 6, 24, 2, 14 5, 14, 6, 24, 14 14, 6, 14 14 Answer = 14 Comparisons = 24 Median	5, 14, 153 5, 14, 24 14	5, 2 5 14, 6	M1 A1 A1 B1	
(iii)	5, 14, 153, 6, 24, 2, 14 5, 14, 6, 24, 14 14, 6, 14 14 Answer = 14 Comparisons = 24 Median Time taken approximately pro	5, 14, 153 5, 14, 24 14	5, 2 5 14, 6 square of length	M1 A1 A1	
(ii) (iii) (iv)	5, 14, 153, 6, 24, 2, 14 5, 14, 6, 24, 14 14, 6, 14 14 Answer = 14 Comparisons = 24 Median	5, 14, 153 5, 14, 24 14	5, 2 5 14, 6 square of length	M1 A1 A1 B1	

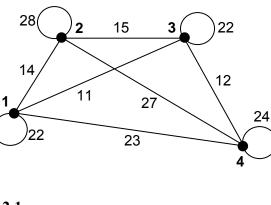
3.			
(i)	$T_1 \rightarrow T_2 T_1 \rightarrow T_3 \rightarrow T_2$	M1	
	$T_1 \rightarrow T_3 T_1 \rightarrow T_2 \rightarrow T_3$	A1	
	$T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_4$ $T_1 \rightarrow T_3 \rightarrow T_4$		
(;;)		M1	
(ii)	$T_4 \rightarrow T_3 \rightarrow T_2 \rightarrow T_1 \qquad T_4 \rightarrow T_3 \rightarrow T_1$	A1	
	$T_4 \rightarrow T_3 \rightarrow T_1 \rightarrow T_2$ $T_4 \rightarrow T_3 \rightarrow T_2$		
	$T_4 \rightarrow T_3$		
(iii)	22	M1	allow for 23
()		A1	
(iv)	11	M1	halving (not 11.5)
()		A1	


4771	Mar	k Scheme		June 20. Rainscloud.com
4.				SCIOUR
(i) e.g.	$00-09 \rightarrow 1$ $10-39 \rightarrow 2$ $40-79 \rightarrow 3$ $80-89 \rightarrow 4$ $90-99 \rightarrow 5$		M1 A1 propor A1 efficier	tions OK
(ii) e.g. (iii) & (iv)	00-15→1 16-47→2 48-55→3 56-79→4 80-87→5 88-95→6 96, 97, 98, 99 reject		A2 propor	rejected tions OK ch error) nt
no. time	2 2 1 4 1 2 5 1 2 2 2 1 3 4 2 2	-	M1 A2 (–1 ea	ch error)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 1 3 2 5 4 2 2 4 2 5 3 1 4 1 4 4 2 3 1 5 4 1 3 4 2 3 1 5 4 1 3 2 2 2 2 4 3 5 1 2 1 1 1 1 1 1 1 2	17 8 16 6	M1 simula A1 time in A1 passer A1 time to	ntervals ngers
(v) 0.8 more r	uns		B1 B1	



Mark	Scheme
------	--------

4772 Decision Mathematics 2



M1 sca Floyd A1 distance ∞ ∞ A1 route ∞ ∞ ∞ A1 A1 A1

Mark Scheme

B1 loops

B1 rest

M1 A1

B1 B1

(ii) $\begin{array}{c} \mathbf{1} \ \mathbf{3} \ \mathbf{4} \ \mathbf{2} \ \mathbf{1} \\ \mathbf{64} \\ \Rightarrow \mathbf{1} \ \mathbf{3} \ \mathbf{4} \ \mathbf{3} \ \mathbf{2} \ \mathbf{1} \end{array}$

June 20. Trainscioud.com

(a) (i)

 ∞

 ∞

4772	Mark Scheme	June 20	MULARIA COLL
(iii) $27 + 11 + 14 = 52$ TSP solution has length between (b) e.g. 1312341 length = 87 One repeated arc \rightarrow Eulerian	52 and 64	M1 A1 M1 A1 M1 A1 A1 B1	^{1.} COM

Mark Scheme

772							М	ark Sc	heme)
)	Let a	a be	the n	umber	of to	nnes	of A p	roduce	d	
	Max		a+b+							
	st			b+5c< b+2c<						
	e.g.									
	P		а	b			S 1	S ₂	RH	S
	1		<u>-1</u> 3	1 2		1 5	0 1	0	0	1
	0		5	6		2	0	1	50	
	1		-0.4	-0.6	3 ()	0.2	0	12	<u>.</u>
	0		0.6	0.4		1	0.2	0	12	1
	0		3.8	5.2	()	-0.4	1	26	;
	1		>0	0)	>0	>0	15	
	0		4.0./0.0	0		1	0.000	= /0.0	10)
	0		19/26	1)	-2/26	5/26	5	
	Mak	~ E 4								
	wak	ย่อเ	onne	s of B	and 1	0 tor	nnes of	С		
) 8	(iv)		onne	s of B	and 1	10 tor	nnes of	С		
8	(iv)	e.g. P	а	b	С	S 1	S ₂	S ₃	art	RHS
8	(iv) A 1	e.g. P 0	a 1	b 0	<u>с</u> 0	S ₁ 0	S ₂ 0	s₃ −1	0	8
8	(iv)	e.g. P	a 1 _1	b	с 0 –1	S 1	S ₂	S ₃		8 0
8	(iv) A 1 0 0	e.g. P 0 1 0	a 1 -1 3 5	b 0 -1 2 6	c 0 -1 5 2	S1 0 0 1 0	S2 0 0 0 1	S₃ −1 0 0 0 0	0 0 0 0	8 0 60 50
8	(iv) A 1 0 0	e.g. P 0 1 0	a 1 -1 3	b 0 -1 2	с 0 –1 5	S1 0 0 1	S2 0 0 0	s ₃ -1 0 0	0 0 0	8 0 60
8	A 1 0 0 0 0 1	e.g. P 0 1 0 0 0	a 1 -1 3 5 1	b 0 -1 2 6 0 0	C 0 -1 5 2 0	S1 0 1 0 0 0 0 0 0 0 0 0	S2 0 0 1 0 0	s ₃ -1 0 0 0 0 0 0 0 0 0 0	0 0 0 1 -1	8 0 60 50 8
8	(iv) A 1 0 0 0 0 0 1 0	e.g. P 0 1 0 0 0 0	a 1 -1 3 5 1 0 0	b 0 -1 2 6 0 0 -1	c 0 -1 5 2 0 0 -1	S1 0 1 0 0 0 0 0 0 0 0 0	S2 0 0 0 0 0 0 0 0 0 0 0 0 0	s₃ -1 0 0 0 0 0 -1 0 -1	0 0 0 1 -1 1	8 0 60 50 8 0 8
) 8	(iv) A 1 0 0 0 0 0 1 0 0	e.g. P 0 1 0 0 0 1 0 1 0	a 1 -1 3 5 1 0 0 0	b 0 1 2 6 0 0 1 2	c 0 -1 5 2 0 0 -1 5	S1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1	S2 0 0 1 0 0	s₃ -1 0 0 0 -1 0 -1 0 -1 3	0 0 0 1 -1 1 -3	8 0 50 8 0 8 36
8	(iv) A 1 0 0 0 0 0 1 0	e.g. P 0 1 0 0 0 0	a 1 -1 3 5 1 0 0	b 0 -1 2 6 0 0 -1	c 0 -1 5 2 0 0 -1	S1 0 1 0 0 0 0 0 0 0 0 0	S2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	s₃ -1 0 0 0 0 0 -1 0 -1	0 0 0 1 -1 1	8 0 60 50 8 0 8
8	A 1 0 0 0 0 0 0 0 0 0 0 0 0	e.g. P 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	a 1 -1 3 5 1 0 0 0 0 0 0 1	b 0 -1 2 6 0 0 -1 2 6 0 0	c 0 -1 5 2 0 0 -1 5 2 0 0	S1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 1 -1 1 -3 -5	8 0 50 8 0 8 36 10 8
8	A 1 0 0 0 0 0 0 0 0 0 0 0 0	e.g. P 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	a 1 -1 3 5 1 0 0 0 0 0 1 1 0 0 0	b 0 -1 2 6 0 -1 2 6 0 -1 2 6 0 2 -13	c 0 -1 5 2 0 0 -1 5 2 0 0 0 0 0 0 0	S1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1			0 0 0 1 -1 1 -3 -5	8 0 50 8 0 8 36 10 8 36 10 8 13
8	A 1 0 0 0 0 0 0 0 0 0 0 0 0	e.g. P 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	a 1 -1 3 5 1 0 0 0 0 0 1 1	b 0 1 2 6 0 1 2 6 0 0 2	c 0 -1 5 2 0 -1 5 2 0 -1 5 2 0	S1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 1 -1 1 -3 -5	8 0 50 8 0 8 36 10 8 8 36 10 8

4773 Decision Mathematics Computation

1.		
(i)	$XA + XB + XE + XF \ge 1$	M1 A1 ">" OK
	Indicator variables correspond to matrix column A (or row A) entries which are less than or equal to 5. Ensures that at least one such indicator is 1.	B1 indicator vars B1 <= 5 B1
(ii)	Min $XA+XB+XC+XD+XE+XF$ st $XA+XB+XE+XF >= 1$ XA+XB+XE+XF >= 1 XC+XF >= 1 XD+XE >= 1 XA+XB+XD+XE+XF >= 1 XA+XB+XC+XE+XF >= 1	B1 M1 A3 (-1 each error/ omission) allow (correct) reduced set of inequalities
(iii)	2 centres, at F&D or E&C or E&F	M1 A1 A1
(iv) (v)	e.g. add XF=0 to force solution E and C Three solutions are F & D, E & C, E & F.	M1 A1 B1
(vi)	Problem is unimodular (or convincing argument). In the interests of efficiency (and parsimony).	B1 B1

4773 2.	Mark Scheme								www.my. June 20	Mathscioud.com
(i)	e.g. (candida	ates sho	uld show	v formula	e)					COM
α =		(birth) F	P(death)	rand	ranc	l birth	n deat	h E	31 handling	
$\beta =$	0.04 9	0.1	0.4	0.4261	0.3537		-	1	parameters	
	8	0.09	0.36	0.257	0.1405				31 births	
	8	0.08	0.32	0.8854	0.8632	2 ()	•	31 deaths 31 use of "rand"	
								_	31 use of "if"	
									31 updating	
									population	
(ii)	e.g. 11320	2233	0 - 0.2					N	M1 A1 B1	
(iii)	e.g.							_		
	β	0.01	0.02 0	.03 0.04	0.05	0.06	0.07		M1	
	prob extinction	n 0	0 0	.1 0.2	0.5	0.7	0.8		A1 decent range A1 reasonable	
									outcomes	
(iv)	Addition of an	other rai	nd + ano	ther if +	extra a	dd-on			31 M1 A1	
									31	
(v)	A C									
(v)	e.g. β	0.01	0 02 0	.03 0.04	0.05	0.06	0 07		/ 1	
	prob. extinctio		0.02 0		0.00		0.3	A	\1	
		-		-	-					

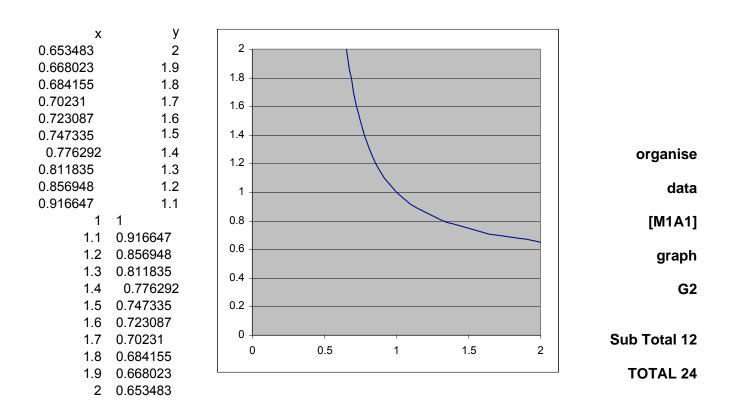
4773 Mark S	scheme	June 20. Mainschool 1 objective 11 flow balance	
4//5 INAINC	cheme	Julie 200 VIASCI	15
3.			uq.
(a) max AB+AE st AB-BC-BD+CB+DB=0	В	1 objective	OM
BC+DC-CB-CD-CG=0 BD+ED+CD-DB-DC-DE=0 AE-ED-EF+DE+FE=0 EF-FE-FG=0 AB<8 AE<3	M A:		
BC<5 CB<5 BD<7 DB<7 CD<1 DC<1 DE<2 ED<2 EF<4 FE<4 FE<4 CG<8	M	11 capacity 1 constraints	
FG<6 END			
OBJECTIVE FUNCTION VALUE 1) 10.00000 VARIABLE VALUE REDUCED COS AB 7.000000 0.000000 AE 3.000000 0.000000 BD 2.000000 0.000000 BD 2.000000 0.000000 CB 0.000000 1.000000 DC 1.000000 0.000000 CD 0.000000 1.000000 CG 6.000000 0.000000 ED 0.000000 0.000000 EF 4.000000 0.000000 FE 0.000000 1.000000 FG 4.000000 0.000000	ST A		
Max flow of 10 with flows of 7 from A to B,	etc. B	1 interpretation	
(b) min 8X12+3X15+8X21+5X23+7X24+5X32+X34 +X43+2X45+3X51+2X54+4X56+4X65+6X6 st X12+X15=10 X21+X23+X24=10	7+8X73+6X76 A	.1	
x32+x34+x37=10 x42+x43+x45=10	M A		

	mm. m. m.
4773 Mark Scheme	June 20 June 20
X51+X54+X56=10 X65+X67=10 X73+X76=10 X21+X51=10 X12+X32+X42=10 X23+X43+X73=10 X24+X34+X54=10 X15+X45+X65=10 X56+X76=10 X37+X67=10 END	Mun mun anno sense course and sense course and sense and
OBJECTIVE FUNCTION VALUE 1) 310.0000	M1 run
VARIABLE VALUE REDUCED COST X12 0.000000 0.000000 X15 10.000000 0.000000 X21 0.000000 0.000000 X23 10.000000 0.000000 X24 0.000000 0.000000 X32 0.000000 0.000000 X34 10.000000 0.000000 X37 0.000000 0.000000 X43 0.000000 0.000000 X44 0.000000 0.000000 X42 10.000000 0.000000 X43 0.000000 0.000000 X51 10.000000 0.000000 X56 0.000000 0.000000 X65 0.000000 0.000000 X67 10.000000 0.000000 X73 0.000000 0.000000 X76 10.000000 0.000000 X76 10.000000 0.000000	A1 results B1 interpretation

47	73
----	----

4773 <u>4</u> .	Mark Scheme	Mun nymainscioud.com M1 A1 M1
(a) Auxiliary equation: $2\lambda^2 - 3\lambda + 1 = 0$ $(2\lambda - 1)(\lambda - 1) = 0$ $\lambda = 1 \text{ or } \frac{1}{2}$		M1 A1 M1 A1
$u_n = A + B(\frac{1}{2})^n$		B1 B1 B1
5 = A + B $3 = A + \frac{1}{2}B$		B1
$u_n = 1 + 4(\frac{1}{2})^n$ $u_2 = 2, u_3 = 1.5, u_{10} = 1.00390$	6	M1 A1 B1 B1
u ₁₀₀₀₀₀₀ ≈ 1 (b)(i) & (ii)		B1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M1 A1 3.087891 A1 6.893122
(iii) Limited wrt to (very) long-term		B1

							Mun My Man June 20
4776				Mark Sc	:heme		June 20 naths
4776	Nume	erical	Meth	nods			40
1	x f(x)	3 0.5	3.5 -0.8			x (-0.8) - 3.5 x 0.5) / (-0.8 .192308 (3.192, 3.19)	B - 0.5) [M1A1A1]
				(-) mpe is	3.5 - 3.192	2308 = 0.307602 (0.308	B, 0.31) [M1A1]
							[TOTAL 6]
2	1 3 5 7	2 1 5 k	-1 4 k-5	5 k-9	k-14		
	9	2 16-3k = k-1	2-k 14 he	7-2k ence k = 7.	16-3k 7.5		[M1A1A1A1] [M1A1] [TOTAL 6]
3	h 0.2 0.1 0.05	f(2+h) .494507 .323418 .241636	f(2-h) .867869 .010586 .085281		f '(2) .566594 .564163 .563555	-0.00243 -0.00061	derivatives [M1A1A1A1] differences [M1A1]
		s reducing l ure to 3 dp.	-	4 so next o	estimate at	bout 1.56340.	[M1] [B1] [TOTAL 8]
4	$f(x) = x^3 - 25$ $x_{r+1} = x_r - (x_r)^2$	5 (x _r ³ -25)/3x _r ²	$f'(x) = 3x^2$	2 (a.g.)			[M1A1A1]
	r X _r diffs ratios differences	0 4 s reducing a	1 3.1875 -0.8125 at an increa	2 .945197 -0.2423 .298219 asing rate	3 2.92417 -0.02103 .086783 (hence fast	ter than first order)	[M1A1] [B1] [B1] [E1] [TOTAL 8]
5 (i)	0.001 369	352	(accept 0.	001 369 4))		[B1]
(ii)	sin 86° = 0 564			sin 85° = (195	0.996		[B1B1]
	sin 86° - Si	in 86° = 0.0	01 369				[A1]
(iii)	2 x 0.0784 = 0.001369	4591 x 0.008 935	8 726 54				[M1] [A1]
(iv)	-				•	(<i>may be implied</i>) nbers and so loses accura	[E1] acy [E1]
							[TOTAL 8]


98

4776		Mark Sc	heme		Munu, Mu Marine June 20. Narinscioud.com [M1A1A1]
6 (i)	h M 2 2.763547 2 1 2.677635 2 0.5 2.656743 2	2.594393		mid-point: trapezium:	[M1A1A1A 1]
(ii)		diffs -0.08591 -0.02089 reducing by	/ a factor 4 (may be imp	plied)	[subtotal 7] [M1A1E1]
	Differences	s in T reduce by a fac	tor 4, too		[B1] [subtotal 4]
(iii)	M 2.763547 2.677635 2.656743		-0.00089033 -0.000054333	S values: diffs	[M1] [A1A1] [A1]
	How this lea Next differe	s in S reducing fast e. eads to an answer, e. ence about -0.000003 498 or 2.64983	g:		[E1] [E1] [A1] [subtotal 7]
					[TOTAL 18]
7 (i)	Eg: graph of x ² and 4 · Change of sign to find				[G2] [B1]
	r 0 x _r 2.5 2 2.1149 sect	1 2 2.097618 2.115829 2 cure to 4 dp	3 4 2.114859 2.11491	5 2.114907	[M1A1A1] [A1] [subtotal 7]
(ii)	The iteration gives pos	sitive values only.			[E1]
	r 0 x _r -2 -1.8608 secu	1 2 -1.87083 -1.86158 sure to 4 dp	3 4 -1.86087 -1.86081	5 -1.86081	[M1A1A1] [A1] [subtotal 5]

4776					Mark So	cheme			June 20. Mains cloud. con
(iii)	Eg		r x _r	0 -0.5	1 -1.41421	2 -1.81463	3 -1.85713	4 -1.86052	SIDUCIO, COL
			not conve	erging to rea	quired root	(convergin	g to previo	us root)	[M1A1]
	Eg		x _{r+1} = 1 / ((x _r ² - 4)					[M 1]
		r	0	1	2	3	4	5	
		Xr	-0.5	-0.26667	-0.25452	-0.25412	-0.2541	-0.2541	[M1A1]
			-0.2541 s	ecure to 4	dp				[A1] [subtotal 6]
									[TOTAL 18]

4777 Numerical Computation

4777 47 7		lumer	ical C		k Scheme			Ju	www.mymainsch	sus com
1 (i)	Eg: e _{r+1}	is approxim	ately ke _r						[E2]	
(1)				$y_2 = \alpha + k^2$ k hence give		uivalent			[M1A1] [A1A1] [subtotal 6]	
(ii)	Convinc	ing re-arran	gment	extrap					[A1]	
	y o	y 1	y ₂	(new y _o)	new y ₁	new y ₂	extrap	once	[M1A1]	
	1	0.908662	0.917409		0.916648	0.916647	0.916647 oks secure	twice	[M1A1] [A1] [subtotal 6]	
(iii)					extrap					
	х	y ₀	y 1	y ₂	(new y _o)	new y ₁	new y ₂	extrap		
	1.1	1	0.908662	0.917409	0.916644	0.916648	0.916647	0.916647		
	1.2	0.916647	0.845937	0.858962	0.856936	0.85695	0.856947	0.856948	set up	
	1.3	0.856948	0.799744	0.815042	0.811814	0.81184	0.811833	0.811835	SS	
	1.4	0.811835	0.763904	0.780556	0.776263	0.776302	0.776288	0.776292	[M2A2]	
	1.5	0.776292	0.734953	0.752555	0.747298	0.747351	0.747329	0.747335	_	
	1.6	0.747335	0.7108	0.729213	0.723043	0.72311	0.723076	0.723087	values	
	1.7	0.723087	0.690112	0.70934		0.70234	0.702292	0.70231	[A3]	
	1.8 1.9	0.70231 0.684155	0.671996 0.655831	0.692131 0.677026	0.684095 0.667954	0.684194 0.668075	0.684128 0.667985	0.684155 0.668023		
	1.9	0.668023	0.655651	0.663627	0.653402	0.65355	0.653427	0.653483		
	2	0.000020	0.041170	0.000021	0.000-0Z		oks secure	0.000-00	[A1]	

4777		2 4	6	Mar	k Scheme		Ju	Munu, my mains cloud, com [M1A1]
2 (i)	$T_{2n} - I = 4(T_{2n} - I)$ $4T_{2n} - T_{r}$ $(4T_{2n} - T_{r})$ $(T_{n}^{*} = (4)$	$(T_n - I) = k_1 - 3I = b_4 h^4$ $T_n - 3I = b_4 h^4$ $T_n - 3I = B_4 h^4$ $T_n - T_n - T_n - T_n - T_n$	$A_4(h/2)^4 + A_6(h/2)^4 + b_6h^6 +$ $b_4h^4 + b_6h^6 +$ $h^4 + B_6h^6 +$ has error o	+				[M1A1] [M1] [A1] [A1] [B1] [subtotal 6]
(ii)	1	f(x) 0 3.523188 0.731059 0.155615 1.839543 0.035136 0.382038 1.214531 2.609105 0.0083 0.083344 0.254435 0.540367 0.955439 1.509072 2.206199 3.048173	2.182155	T* 2.149141 2.160989 2.161572 2.161572			f: <i>T:</i> <i>T*:</i> <i>T**:</i> <i>answer:</i>	[M1A2] [M1A1] [M1A1]
(iii)	k 0.25 0.5 0.75 1.25 1.5 1.75 2	 0.002847 0.024686 0.089495 0.225935 0.466242 0.845007 1.398068 2.161609		2.5 2 1.5 1 0.5 0 0	0.5	1 1.5	2	modify SS [M2] values of I [A2] graph [G2] [subtotal 6]
(iv)	k 1.57 1.58 1.579	l 0.980739 1.001291 0.999223		accept 1.5 or 1.58 (or in betw			evidence of t&e: result:	

MWWW. My Marks Marks June 20. Paths Cloud. Com

setup [M3]

values [A3]

Mark Scheme

3 (i)	h	х	У	k 1	k 2	k 3	k 4
~ /	0.2	0	0	0.2	0.110557	0.121189	0.086653
	0.2	0.2	0.125024	0.085978	0.063177	0.064854	0.046393
	0.2	0.4	0.189763	0.046408	0.031125	0.032033	0.018694
	0.2	0.6	0.221666	0.018708	0.007021	0.007628	-0.00291
	0.2	0.8	0.229182	-0.0029	-0.01239	-0.01194	-0.02066
	0.2	1	0.217146	-0.02065	-0.02863	-0.02828	-0.0357
	0.2	1.2	0.188783	-0.03569	-0.04256	-0.04228	-0.04872
	0.2	1.4	0.146433	-0.04871	-0.05472	-0.05449	-0.06015
	0.2	1.6	0.091887	-0.06015	-0.06547	-0.06527	-0.07031
	0.2	1.8	0.026567	-0.0703	-0.07506	-0.07488	-0.07941
	0.2	2	-0.04836	-0.0794	-0.08369	-0.08353	-0.08762
	0.2	2.2	-0.13194	-0.08761	-0.0915	-0.09136	-0.09507
	0.2	2.4	-0.22334	-0.09507	-0.0986	-0.09849	-0.10187
	0.2	2.6	-0.32186	-0.10187	-0.1051	-0.105	-0.1081
	0.2	2.8	-0.42689	-0.1081	-0.11107	-0.11097	-0.11382
	0.2	3	-0.53789	-0.11382	-0.11656	-0.11647	-0.1191

 $\begin{array}{c} 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ -0.1 \\ 0 \\ -0.5 \\ -0.2 \\ -0.3 \\ -0.4 \\ -0.5 \\ -0.6 \end{array}$

root about 1.8

Maximum about (0.8, 0.23)

[G2]

[A1A1A1] [subtotal11]

(ii)		•).77, 0.2274 ween 1.87 a	,	e (0.77, 0.23) accept eithe			[M2] [A1A1] [A1] [subtotal5]
(iii)	Eg:								
• •	S	h	х	у	k 1	k 2	k 3	k 4	
	1	0.01	0	Ő	0.01	0.009	0.009025	0.008621	
	1	0.01	0.01	0.009112	0.008618	0.008314	0.008319	0.008065	
	1	0.01	0.02	0.017437	0.008065	0.007844	0.007847	0.007649	Mods
	1	0.01	0.03	0.025286	0.007649	0.007468	0.00747	0.007303	[M3]
	1	0.01	0.04	0.032757	0.007303	0.007147	0.007148	0.007002	t&e
									[M3]
	s = 0.7	715, h = 0.	01 gives	root closest	to x = 1	accept 0.71	to 0.72		[A2]
									[subtotal8] [TOTAL 24]

MMM, TAJTAR THE AND				heme	Mark Scl				7	477
[M1]							$(x - cx^2)^2$	(y - a - b	Q = Σ	4 (i)
[M1A1]			ive	as gi	+ c Σ x ²	na + b Σ x +	Σ y =	= 0	dQ/da gives	(•)
[B1]					$\mathbf{x}^2 + \mathbf{c} \Sigma \mathbf{x}^3$	a Σ x + b Σ	Σ xy =	000.	other	
[B1] [subtotal 5]	_			ŀ	$\Sigma \mathbf{x}^3 + \mathbf{c} \Sigma \mathbf{x}^4$	$a \Sigma x^2 + b \Sigma$	$\Sigma x^2 y =$		-	<i>~</i> ~~~
[G2]		3	2		1	3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 0		Y 1.02 2.08 2.73 3.14 2.87 2.22 1.43	X 0 0.5 1 1.5 2 2.5 3	(ii)
[E1]									roughl parabo	
[subtotal 3]							shape	atic) in s		
		x ⁴	3	x ³	x ²	x ² y	ху	У	x	(iii)
		0		0	0	0	0	1.02	0	
		0.0625		0.125	0.25	0.52	1.04	2.08	0.5	
		1		1	1	2.73	2.73	2.73	1	
		5.0625		3.375	2.25	7.065	4.71	3.14	1.5	
		16		8 15 625	4 6 25	11.48	5.74 5.55	2.87	2	
IWOI		39.0625 81		15.625 27	6.25	13.875 12.87	5.55 4.29	2.22 1.43	2.5 3	
[M2] [A2]		142.1875		رے 55.125	9 22.75	12.87 48.54	4.29 24.06	1.43 15.49	ۍ 10.5	
[A2]		142.1075)	55.125	22.15	40.34	24.00		norma	
									equati	
form equations					15.49	22.75	10.5	7		
[M1A1]					24.06	55.125	22.75	10.5		
solution		017619	- 1	a=	48.54	142.1875	55.125	22.75	Г	
[M2A2]		562143	= 2	b=	0.554615	-21	-6.46154		L	
					1.656923	-10.5	-2.69231			
).81476	= .	C=	1.425833	-1.75	[-		
					res ²	residual	y fitted	у	x	
					5.67E-06	0.002381	1.017619	1.02	0	
					0.000225	-0.015	2.095	2.08	0.5	
y fitted					0.001225	-0.035	2.765	2.73	1	
[M1A1]					0.012629	0.112381	3.027619	3.14	1.5	
rooiduele					0.000165	-0.01286	2.882857	2.87	2	
residuals					0.012258	-0.11071	2.330714	2.22	2.5 3	
[M1A1]					0.003459 0.029967	0.05881 -3.6E-15	1.37119	1.43	კ	
[E1] [A1] [subtotal 16]		should be	as i	errors) a	rounding e	o (except for uares is 0.02				

Grade Thresholds

Advanced GCE MEI Mathematics 3895 7895 June 2008 Examination Series

Unit Threshold Marks

Ur	nit	Maximum Mark	Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	61	53	45	37	30	0
4752	Raw	72	55	48	41	34	28	0
4753	Raw	72	59	52	46	40	33	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	75	67	59	51	43	0
4755	Raw	72	60	51	42	34	26	0
4756	Raw	72	57	51	45	39	33	0
4757	Raw	72	50	44	38	33	28	0
4758	Raw	72	58	50	42	34	26	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	57	48	39	30	22	0
4762	Raw	72	56	48	40	33	26	0
4763	Raw	72	53	45	37	29	21	0
4764	Raw	72	55	47	40	33	26	0
4766	Raw	72	53	45	38	31	24	0
4767	Raw	72	57	49	41	33	26	0
4768	Raw	72	56	49	42	35	28	0
4769	Raw	72	57	49	41	33	25	0
4771	Raw	72	58	51	44	37	31	0
4772	Raw	72	51	44	37	31	25	0
4773	Raw	72	51	44	37	30	24	0
4776	Raw	72	57	49	41	34	26	0
4776/02	Raw	18	14	12	10	8	7	0
4777	Raw	72	54	46	39	32	25	0

www.mymathscloud.com

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

_	Maximum Mark	Α	В	С	D	E	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

www.mymathscloud.com

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
7895	42.5	63.7	79.2	90.7	97.5	100	9600
7896	58.0	78.2	89.2	95.3	98.7	100	1539
7897	73.5	85.3	88.2	100	100	100	34
7898	27.8	52.8	61.1	77.8	91.7	100	36
3895	30.5	46.0	60.6	73.6	83.7	100	12767
3896	49.7	68.6	81.4	90.0	95.2	100	2039
3897	82.1	88.5	92.3	97.4	100	100	78
3898	47.8	52.2	69.6	87.0	95.7	100	23

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

